These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37594644)

  • 1. A magnetic nanoparticle-based microfluidic device fabricated using a 3D-printed mould for separation of Escherichia coli from blood.
    Jóskowiak A; Nogueira CL; Costa SP; Cunha AP; Freitas PP; Carvalho CM
    Mikrochim Acta; 2023 Aug; 190(9):356. PubMed ID: 37594644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section.
    Lee W; Kwon D; Choi W; Jung GY; Jeon S
    Sci Rep; 2015 Jan; 5():7717. PubMed ID: 25578942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Modular Microfluidic Device Enabling Preconcentrating Bacteria and Purifying Bacterial DNA in Blood for Improving the Sensitivity of Molecular Diagnostics.
    Abafogi AT; Kim J; Lee J; Mohammed MO; van Noort D; Park S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli.
    Fande S; Amreen K; Sriram D; Goel S
    Anal Chim Acta; 2023 Jan; 1237():340591. PubMed ID: 36442949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes.
    Litti L; Trivini S; Ferraro D; Reguera J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34752-34761. PubMed ID: 34256559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles.
    Hasan N; Guo Z; Wu HF
    Anal Bioanal Chem; 2016 Sep; 408(23):6269-81. PubMed ID: 27565791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast fluorometric enumeration of E. coli using passive chip.
    Kasap EN; Doğan Ü; Çoğun F; Yıldırım E; Boyacı İH; Çetin D; Suludere Z; Tamer U; Ertaş N
    J Microbiol Methods; 2019 Sep; 164():105680. PubMed ID: 31381980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea.
    Cho S; Park TS; Nahapetian TG; Yoon JY
    Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood.
    Jung SH; Hahn YK; Oh S; Kwon S; Um E; Choi S; Kang JH
    Small; 2018 Aug; 14(34):e1801731. PubMed ID: 30044534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood.
    Lee JJ; Jeong KJ; Hashimoto M; Kwon AH; Rwei A; Shankarappa SA; Tsui JH; Kohane DS
    Nano Lett; 2014 Jan; 14(1):1-5. PubMed ID: 23367876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-Mediated Capture and Electrochemical Detection of Methicillin-Resistant Staphylococcus aureus.
    Nemr CR; Smith SJ; Liu W; Mepham AH; Mohamadi RM; Labib M; Kelley SO
    Anal Chem; 2019 Feb; 91(4):2847-2853. PubMed ID: 30676721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device.
    Écija-Arenas Á; Román-Pizarro V; Fernández-Romero JM
    Mikrochim Acta; 2020 Oct; 187(11):620. PubMed ID: 33084998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles.
    Park C; Lee J; Kim Y; Kim J; Lee J; Park S
    J Microbiol Methods; 2017 Jan; 132():128-133. PubMed ID: 27923650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic device and instrument prototypes for the detection of
    Alonzo LF; Hinkley TC; Miller A; Calderon R; Garing S; Williford J; Clute-Reinig N; Spencer E; Friend M; Madan D; Dinh VTT; Bell D; Weigl BH; Nugen SR; Nichols KP; Le Ny AM
    Lab Chip; 2022 May; 22(11):2155-2164. PubMed ID: 35521688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.
    Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M
    Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Dogan Ü; Sucularlı F; Yildirim E; Cetin D; Suludere Z; Boyaci IH; Tamer U
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of
    Malhotra S; Pham DS; Lau MPH; Nguyen AH; Cao H
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.