These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37594734)

  • 1. Design of a High-Performance Titanium Nitride Metastructure-Based Solar Absorber Using Quantum Computing-Assisted Optimization.
    Kim S; Wu S; Jian R; Xiong G; Luo T
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40606-40613. PubMed ID: 37594734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting.
    Sun C; Liu H; Yang B; Zhang K; Zhang B; Wu X
    Phys Chem Chem Phys; 2022 Dec; 25(1):806-812. PubMed ID: 36510760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures.
    Ryu Y; Kim C; Ahn J; Urbas AM; Park W; Kim K
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29884-29892. PubMed ID: 30107113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning.
    Patel SK; Parmar J; Katkar V
    Sci Rep; 2022 Jun; 12(1):10166. PubMed ID: 35715482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption.
    Su J; Chen G; Ma C; Zhang Q; Li X; Geng Y; Jia B; Luo H; Liu D
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband Perfect Absorber Based on TiN-Nanocone Metasurface.
    Huo D; Zhang J; Wang Y; Wang C; Su H; Zhao H
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern-free solar absorber driven by superposed Fabry-Perot resonances.
    Liu H; Yu K; Zhang K; Ai Q; Xie M; Wu X
    Phys Chem Chem Phys; 2023 Apr; 25(15):10628-10634. PubMed ID: 37000526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers.
    Bricchi BR; Mascaretti L; Garattoni S; Mazza M; Ghidelli M; Naldoni A; Li Bassi A
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18453-18463. PubMed ID: 35436405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-Processed Plasmonic-Dielectric Sunlight-Collecting Nanofilms for Solar Thermoelectric Application.
    Lee DH; Pyun SB; Bae Y; Kang DP; Park JW; Cho EC
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43583-43595. PubMed ID: 29172424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems.
    Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ
    Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High broadband light absorption in ultrathin MoS
    Bueno-Blanco C; Svatek SA; Antolin E
    Opt Express; 2022 Nov; 30(23):42678-42695. PubMed ID: 36366717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.