These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37594913)
1. Structure and Conformation of Hydroxypropylmethyl Cellulose with a Wide Range of Molar Masses in Aqueous Solution─Effects of Hydroxypropyl Group Addition. Saiki E; Iwase H; Horikawa Y; Shikata T Biomacromolecules; 2023 Sep; 24(9):4199-4207. PubMed ID: 37594913 [TBL] [Abstract][Full Text] [Related]
2. Conformation and Structure of Hydroxyethyl Cellulose Ether with a Wide Range of Average Molar Masses in Aqueous Solutions. Yoshida M; Iwase H; Shikata T Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365525 [TBL] [Abstract][Full Text] [Related]
3. Evidence of a Rod-like Structure for Hydroxypropyl Cellulose Samples in Aqueous Solution. Yoshida M; Iwase H; Horikawa Y; Shikata T Biomacromolecules; 2024 Jul; 25(7):4255-4266. PubMed ID: 38814246 [TBL] [Abstract][Full Text] [Related]
4. Elongated Rodlike Particle Formation of Methyl Cellulose in Aqueous Solution. Saiki E; Yoshida M; Kurahashi K; Iwase H; Shikata T ACS Omega; 2022 Aug; 7(33):28849-28859. PubMed ID: 36033728 [TBL] [Abstract][Full Text] [Related]
5. Reconsideration of the conformation of methyl cellulose and hydroxypropyl methyl cellulose ethers in aqueous solution. Arai K; Horikawa Y; Shikata T; Iwase H RSC Adv; 2020 May; 10(32):19059-19066. PubMed ID: 35518322 [TBL] [Abstract][Full Text] [Related]
6. Rigid Rod-like Viscoelastic Behaviors of Methyl Cellulose Samples with a Wide Range of Molar Masses Dissolved in Aqueous Solutions. Nakagawa D; Saiki E; Horikawa Y; Shikata T Molecules; 2024 Jan; 29(2):. PubMed ID: 38257380 [TBL] [Abstract][Full Text] [Related]
7. Evidence of Long Two-Dimensional Folding Chain Structure Formation of Poly(vinylidene fluoride) in Saiki E; Nohara Y; Iwase H; Shikata T ACS Omega; 2022 Jul; 7(26):22825-22829. PubMed ID: 35811863 [TBL] [Abstract][Full Text] [Related]
8. A New Concept for Interpretation of the Viscoelastic Behavior of Aqueous Sodium Carboxymethyl Cellulose Systems. Yoshida M; Nakagawa D; Hozumi H; Horikawa Y; Makino S; Nakamura H; Shikata T Biomacromolecules; 2024 Jun; 25(6):3420-3431. PubMed ID: 38733614 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of radius of gyration and intrinsic viscosity molar mass dependence and stiffness of hyaluronan. Mendichi R; Soltés L; Giacometti Schieroni A Biomacromolecules; 2003; 4(6):1805-10. PubMed ID: 14606912 [TBL] [Abstract][Full Text] [Related]
10. Structure of arabinogalactan-protein from Acacia gum: from porous ellipsoids to supramolecular architectures. Renard D; Garnier C; Lapp A; Schmitt C; Sanchez C Carbohydr Polym; 2012 Sep; 90(1):322-32. PubMed ID: 24751048 [TBL] [Abstract][Full Text] [Related]
11. Chain conformation of sulfated derivatives of beta-glucan from sclerotia of Pleurotus tuber-regium. Zhang M; Zhang L; Wang Y; Cheung PC Carbohydr Res; 2003 Nov; 338(24):2863-70. PubMed ID: 14667707 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic behavior of high molar mass linear polyglycidol in dilute aqueous solution. Rangelov S; Trzebicka B; Jamroz-Piegza M; Dworak A J Phys Chem B; 2007 Sep; 111(38):11127-33. PubMed ID: 17803304 [TBL] [Abstract][Full Text] [Related]
13. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization. Li Y; Shen H; Lyons JW; Sammler RL; Brackhagen M; Meunier DM Carbohydr Polym; 2016 Mar; 138():290-300. PubMed ID: 26794765 [TBL] [Abstract][Full Text] [Related]
14. Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution. Arai K; Shikata T Molecules; 2020 Oct; 25(20):. PubMed ID: 33076298 [TBL] [Abstract][Full Text] [Related]
15. Aggregation of modified celluloses in aqueous solution: transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low-molecular-weight oxyethylene additive. Bodvik R; Karlson L; Edwards K; Eriksson J; Thormann E; Claesson PM Langmuir; 2012 Sep; 28(38):13562-9. PubMed ID: 22931403 [TBL] [Abstract][Full Text] [Related]
16. Application of Dynamic and Static Light Scattering for Size and Shape Characterization of Small Extracellular Nanoparticles in Plasma and Ascites of Ovarian Cancer Patients. Kogej K; Božič D; Kobal B; Herzog M; Černe K Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884751 [TBL] [Abstract][Full Text] [Related]
17. Molecular flexibility of methylcelluloses of differing degree of substitution by combined sedimentation and viscosity analysis. Patel TR; Morris GA; de la Torre JG; Ortega A; Mischnick P; Harding SE Macromol Biosci; 2008 Dec; 8(12):1108-15. PubMed ID: 18683163 [TBL] [Abstract][Full Text] [Related]
18. Revealing the Compact Structure of Lactic Acid Bacterial Heteroexopolysaccharides by SAXS and DLS. Khan S; Birch J; Harris P; Van Calsteren MR; Ipsen R; Peters GH; Svensson B; Almdal K Biomacromolecules; 2017 Mar; 18(3):747-756. PubMed ID: 28042938 [TBL] [Abstract][Full Text] [Related]
19. Size separation of polystyrene sulfate particles (189 to 1085 nm radius) in solutions of methyl-hydroxypropyl-cellulose of different chain lengths. Burroughs JA; Chrambach A Biochem Biophys Res Commun; 1991 Oct; 180(2):1070-4. PubMed ID: 1953711 [TBL] [Abstract][Full Text] [Related]
20. Solution properties of a heteropolysaccharide extracted from pumpkin (Cucurbita pepo, lady godiva). Song Y; Zhao J; Ni Y; Li Q Carbohydr Polym; 2015 Nov; 132():221-7. PubMed ID: 26256344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]