These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37595230)

  • 21. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination.
    Taghipour N; Whitworth GL; Othonos A; Dalmases M; Pradhan S; Wang Y; Kumar G; Konstantatos G
    Adv Mater; 2022 Jan; 34(3):e2107532. PubMed ID: 34762320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Time-Domain View of Auger Recombination in a Semiconductor.
    Williams KW; Monahan NR; Evans TJ; Zhu XY
    Phys Rev Lett; 2017 Feb; 118(8):087402. PubMed ID: 28282156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.
    Kurzmann A; Ludwig A; Wieck AD; Lorke A; Geller M
    Nano Lett; 2016 May; 16(5):3367-72. PubMed ID: 27087053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding Auger recombination in perovskite solar cells.
    Al-Mousoi AK; Mohammed MKA; Kumar A; Pandey R; Madan J; Dastan D; Hossain MK; Sakthivel P; Anandha Babu G; Yaseen ZM
    Phys Chem Chem Phys; 2023 Jun; 25(24):16459-16468. PubMed ID: 37306330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the exciton-assisted radiative recombination via impurity trap levels in AlGaN deep ultraviolet light-emitting diodes.
    Chen H; Zhao Z; Lin Y; Zhu L; Ma E; Guo W; Wu T; Lin F; Lu Y; Chen Z; Shih T; Lei Y; Pan A
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34102619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast Auger process in few-layer PtSe
    Shin HJ; Bae S; Sim S
    Nanoscale; 2020 Nov; 12(43):22185-22191. PubMed ID: 33135719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonradiative Dynamics Induced by Vacancies in Wide-Gap III-Nitrides: Ab Initio Time-Domain Analysis.
    Yang Y; Shi Z; Zhang S; Ma X; Bai J; Fan D; Zang H; Sun X; Li D
    J Phys Chem Lett; 2023 Jul; 14(29):6719-6725. PubMed ID: 37470335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The detrimental effect of AlGaN barrier quality on carrier dynamics in AlGaN/GaN interface.
    Podlipskas Ž; Jurkevičius J; Kadys A; Miasojedovas S; Malinauskas T; Aleksiejūnas R
    Sci Rep; 2019 Nov; 9(1):17346. PubMed ID: 31757996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells.
    Pazos-Outón LM; Xiao TP; Yablonovitch E
    J Phys Chem Lett; 2018 Apr; 9(7):1703-1711. PubMed ID: 29537271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption.
    Kangsabanik J; Svendsen MK; Taghizadeh A; Crovetto A; Thygesen KS
    J Am Chem Soc; 2022 Nov; 144(43):19872-19883. PubMed ID: 36270007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot.
    Flatae AM; Tantussi F; Messina GC; De Angelis F; Agio M
    J Phys Chem Lett; 2019 Jun; 10(11):2874-2878. PubMed ID: 31084012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of metastable defect structures on carrier recombination in solar cells.
    Kavanagh SR; Scanlon DO; Walsh A; Freysoldt C
    Faraday Discuss; 2022 Oct; 239(0):339-356. PubMed ID: 35924554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonradiative recombination--critical in choosing quantum well number for InGaN/GaN light-emitting diodes.
    Zhang YP; Zhang ZH; Liu W; Tan ST; Ju ZG; Zhang XL; Ji Y; Wang LC; Kyaw Z; Hasanov N; Zhu BB; Lu SP; Sun XW; Demir HV
    Opt Express; 2015 Feb; 23(3):A34-42. PubMed ID: 25836251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonradiative electron-hole recombination by a low-barrier pathway in hydrogenated silicon semiconductors.
    Zhang SB; Branz HM
    Phys Rev Lett; 2000 Jan; 84(5):967-70. PubMed ID: 11017417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites.
    Kirchartz T; Markvart T; Rau U; Egger DA
    J Phys Chem Lett; 2018 Mar; 9(5):939-946. PubMed ID: 29409323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-Hole Correlations Govern Auger Recombination in Nanostructures.
    Philbin JP; Rabani E
    Nano Lett; 2018 Dec; 18(12):7889-7895. PubMed ID: 30403875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the Natural Auger Suppression Mechanism in Heterostructures through Heteroboundary Engineering.
    Slonopas A; Tomkinson D
    J Phys Chem A; 2017 Oct; 121(40):7745-7750. PubMed ID: 28949549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are Shockley-Read-Hall and ABC models valid for lead halide perovskites?
    Kiligaridis A; Frantsuzov PA; Yangui A; Seth S; Li J; An Q; Vaynzof Y; Scheblykin IG
    Nat Commun; 2021 Jun; 12(1):3329. PubMed ID: 34099662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uniform convergence to equilibrium for a family of drift-diffusion models with trap-assisted recombination and the limiting Shockley-Read-Hall model.
    Fellner K; Kniely M
    J Elliptic Parabol Equ; 2020; 6(2):529-598. PubMed ID: 33195442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.