These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37595523)
1. A new composite fabricated from hydroxyapatite, gelatin-MgO microparticles, and compatibilized poly(butylene succinate) with osteogenic functionality. Wu DY; Wang SS; Wu CS Biomater Adv; 2023 Nov; 154():213586. PubMed ID: 37595523 [TBL] [Abstract][Full Text] [Related]
2. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effect of functionalized poly(l-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro. Liu W; Zou Z; Zhou L; Liu H; Wen W; Zhou C; Luo B Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109851. PubMed ID: 31349474 [TBL] [Abstract][Full Text] [Related]
5. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. Sahmani S; Saber-Samandari S; Khandan A; Aghdam MM J Mech Behav Biomed Mater; 2019 Jul; 95():76-88. PubMed ID: 30954917 [TBL] [Abstract][Full Text] [Related]
6. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267 [TBL] [Abstract][Full Text] [Related]
7. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Hickey DJ; Ercan B; Sun L; Webster TJ Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875 [TBL] [Abstract][Full Text] [Related]
8. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
9. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Mahdavi MR; Kehtari M; Mellati A; Mansour RN; Mahdavi M; Mahdavi M; Enderami SE Cell Biochem Funct; 2022 Mar; 40(2):189-198. PubMed ID: 35118692 [TBL] [Abstract][Full Text] [Related]
10. Composite films of gelatin and hydroxyapatite/bioactive glass for tissue-engineering applications. Gentile P; Chiono V; Boccafoschi F; Baino F; Vitale-Brovarone C; Vernè E; Barbani N; Ciardelli G J Biomater Sci Polym Ed; 2010; 21(8-9):1207-26. PubMed ID: 20507716 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis of multi-functional nano-composites by precise loading of Cu Wu H; Yang S; Xiao J; Ouyang Z; Yang M; Zhang M; Zhao D; Huang Q Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112442. PubMed ID: 34702527 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites. Guo W; Zhang Y; Zhang W J Biomed Mater Res A; 2013 Sep; 101(9):2500-6. PubMed ID: 23348918 [TBL] [Abstract][Full Text] [Related]
14. Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(butylene succinate) and Its Compatibilizing Effect on Poly(butylene succinate)/Pistachio Shell Flour Composites. Rojas-Lema S; Arevalo J; Gomez-Caturla J; Garcia-Garcia D; Torres-Giner S Molecules; 2021 Sep; 26(19):. PubMed ID: 34641470 [TBL] [Abstract][Full Text] [Related]
15. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Coelho CC; Padrão T; Costa L; Pinto MT; Costa PC; Domingues VF; Quadros PA; Monteiro FJ; Sousa SR Sci Rep; 2020 Nov; 10(1):19098. PubMed ID: 33154428 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic. Kalantari E; Naghib SM Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992 [TBL] [Abstract][Full Text] [Related]
17. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766 [TBL] [Abstract][Full Text] [Related]
18. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane. Liao H; Shi K; Peng J; Qu Y; Liao J; Qian Z J Nanosci Nanotechnol; 2015 Jun; 15(6):4188-92. PubMed ID: 26369028 [TBL] [Abstract][Full Text] [Related]
19. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
20. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]