These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37595828)
1. Temperature and organic carbon quality control the anaerobic carbon mineralization in peat profiles via modulating microbes: A case study of Changbai Mountain. Wang H; Xu Y; Kumar A; Knorr KH; Zhao X; Perez JPH; Sun G; Yu ZG Environ Res; 2023 Nov; 237(Pt 1):116904. PubMed ID: 37595828 [TBL] [Abstract][Full Text] [Related]
2. Microbial communities and functions are structured by vertical geochemical zones in a northern peatland. Wang HY; Yu ZG; Zhou FW; Hernandez JC; Grandjean A; Biester H; Xiao KQ; Knorr KH Sci Total Environ; 2024 Nov; 950():175273. PubMed ID: 39111416 [TBL] [Abstract][Full Text] [Related]
3. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities. Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226 [TBL] [Abstract][Full Text] [Related]
5. Warming-Induced Labile Carbon Change Soil Organic Carbon Mineralization and Microbial Abundance in a Northern Peatland. Jiang L; Ma X; Song Y; Gao S; Ren J; Zhang H; Wang X Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35889047 [TBL] [Abstract][Full Text] [Related]
6. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
7. Impact of Warming on Greenhouse Gas Production and Microbial Diversity in Anoxic Peat From a Kolton M; Marks A; Wilson RM; Chanton JP; Kostka JE Front Microbiol; 2019; 10():870. PubMed ID: 31105668 [TBL] [Abstract][Full Text] [Related]
8. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169 [TBL] [Abstract][Full Text] [Related]
9. Constraints on microbial communities, decomposition and methane production in deep peat deposits. Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653 [TBL] [Abstract][Full Text] [Related]
10. Responses of peat carbon at different depths to simulated warming and oxidizing. Liu L; Chen H; Zhu Q; Yang G; Zhu E; Hu J; Peng C; Jiang L; Zhan W; Ma T; He Y; Zhu D Sci Total Environ; 2016 Apr; 548-549():429-440. PubMed ID: 26826851 [TBL] [Abstract][Full Text] [Related]
11. Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils. AminiTabrizi R; Graf-Grachet N; Chu RK; Toyoda JG; Hoyt DW; Hamdan R; Wilson RM; Tfaily MM Glob Chang Biol; 2023 Apr; 29(7):1951-1970. PubMed ID: 36740729 [TBL] [Abstract][Full Text] [Related]
12. Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon Soils. Roy Chowdhury T; Berns EC; Moon JW; Gu B; Liang L; Wullschleger SD; Graham DE Front Microbiol; 2020; 11():616518. PubMed ID: 33505383 [TBL] [Abstract][Full Text] [Related]
13. Effects of pyrogenic carbon addition after fire on soil carbon mineralization in the Great Khingan Mountains peatlands (Northeast China). Li G; Sun L; Wang J; Dou X; Ji S; Hu T; Gao C Sci Total Environ; 2023 Mar; 864():161102. PubMed ID: 36566854 [TBL] [Abstract][Full Text] [Related]
14. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249 [TBL] [Abstract][Full Text] [Related]
15. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Juottonen H; Eiler A; Biasi C; Tuittila ES; Yrjälä K; Fritze H Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913414 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils. Diáková K; Čapek P; Kohoutová I; Mpamah PA; Bárta J; Biasi C; Martikainen PJ; Šantrůčková H FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27316560 [TBL] [Abstract][Full Text] [Related]
17. Climate drivers alter nitrogen availability in surface peat and decouple N Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440 [TBL] [Abstract][Full Text] [Related]
18. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China. Chen X; Xue D; Wang Y; Qiu Q; Wu L; Wang M; Liu J; Chen H Environ Microbiome; 2023 Jun; 18(1):48. PubMed ID: 37280702 [TBL] [Abstract][Full Text] [Related]
19. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Kim Y; Ullah S; Roulet NT; Moore TR Sci Total Environ; 2015 Apr; 511():381-92. PubMed ID: 25555258 [TBL] [Abstract][Full Text] [Related]
20. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia. Sakabe A; Itoh M; Hirano T; Kusin K Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]