These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37596256)
1. Accurate and Wide-Voltage-Range Modeling of Electrowetting with a Lattice Boltzmann Approach. Lei Y; Liu B; Zhuang L; Guo Y; Sun H; Yuan D; Tang B; Liu F; Zhou G Langmuir; 2023 Aug; 39(34):12110-12123. PubMed ID: 37596256 [TBL] [Abstract][Full Text] [Related]
5. A model of electrowetting, reversed electrowetting, and contact angle saturation. Klarman D; Andelman D; Urbakh M Langmuir; 2011 May; 27(10):6031-41. PubMed ID: 21510663 [TBL] [Abstract][Full Text] [Related]
6. Electrowetting lattice Boltzmann method for micro- and nano-droplet manipulations. Xu X; Wang F; Qin Z; Wen B Phys Rev E; 2023 Apr; 107(4-2):045305. PubMed ID: 37198769 [TBL] [Abstract][Full Text] [Related]
7. Lattice Boltzmann approach for the fluid-structure interaction of a neo-Hookean medium. Liberge E; Béghein C Phys Rev E; 2022 May; 105(5-2):055307. PubMed ID: 35706205 [TBL] [Abstract][Full Text] [Related]
8. Electrowetting -- from statics to dynamics. Chen L; Bonaccurso E Adv Colloid Interface Sci; 2014 Aug; 210():2-12. PubMed ID: 24268972 [TBL] [Abstract][Full Text] [Related]
9. Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change. Luo K; Pérez AT; Wu J; Yi HL; Tan HP Phys Rev E; 2019 Jul; 100(1-1):013306. PubMed ID: 31499901 [TBL] [Abstract][Full Text] [Related]
10. Neither Lippmann nor Young: enabling electrowetting modeling on structured dielectric surfaces. Chamakos NT; Kavousanakis ME; Papathanasiou AG Langmuir; 2014 Apr; 30(16):4662-70. PubMed ID: 24697520 [TBL] [Abstract][Full Text] [Related]
11. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900 [TBL] [Abstract][Full Text] [Related]
12. Influence of the Ground Electrode on the Dynamics of Electrowetting. Khan I; Castelletto S; Rosengarten G Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838048 [TBL] [Abstract][Full Text] [Related]
14. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
15. Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system. Paneru M; Priest C; Sedev R; Ralston J J Am Chem Soc; 2010 Jun; 132(24):8301-8. PubMed ID: 20507151 [TBL] [Abstract][Full Text] [Related]
17. Modeling of Droplet Impact onto Polarized and Nonpolarized Dielectric Surfaces. Yurkiv V; Yarin AL; Mashayek F Langmuir; 2018 Aug; 34(34):10169-10180. PubMed ID: 30063834 [TBL] [Abstract][Full Text] [Related]
18. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Liang H; Liu H; Chai Z; Shi B Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728 [TBL] [Abstract][Full Text] [Related]
19. Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids. Luo K; Wu J; Yi HL; Tan HP Phys Rev E; 2016 Feb; 93(2):023309. PubMed ID: 26986441 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels. Su W; Lindsay S; Liu H; Wu L Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]