These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37596277)

  • 21. Flow-Induced Long-Term Stable Slippery Surfaces.
    Baumli P; Teisala H; Bauer H; Garcia-Gonzalez D; Damle V; Geyer F; D'Acunzi M; Kaltbeitzel A; Butt HJ; Vollmer D
    Adv Sci (Weinh); 2019 Jun; 6(11):1900019. PubMed ID: 31179214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the interaction mechanism between oil droplets with asphaltenes and solid surfaces using AFM.
    Shi C; Xie L; Zhang L; Lu X; Zeng H
    J Colloid Interface Sci; 2020 Jan; 558():173-181. PubMed ID: 31586737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bubble-Induced Rupture of Droplets on Hydrophobic and Lubricant-Impregnated Surfaces.
    Mullagura HN; Dash S
    Langmuir; 2020 Aug; 36(30):8858-8864. PubMed ID: 32614589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of frost formation on lubricant-impregnated surfaces.
    Rykaczewski K; Anand S; Subramanyam SB; Varanasi KK
    Langmuir; 2013 Apr; 29(17):5230-8. PubMed ID: 23565857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect.
    Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X
    Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface.
    Paulssen D; Hardt S; Levkin PA
    ACS Appl Mater Interfaces; 2019 May; 11(17):16130-16138. PubMed ID: 30932477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X; Patel RS; Weibel JA; Garimella SV
    Sci Rep; 2016 Jan; 6():18649. PubMed ID: 26725512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetting state transitions of individual condensed droplets on pillared textured surfaces.
    Chu C; Zhao Y; Hao P; Lv C
    Soft Matter; 2023 Jan; 19(4):670-678. PubMed ID: 36597934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear-induced coalescence of emulsified oil drops.
    Yeung A; Moran K; Masliyah J; Czarnecki J
    J Colloid Interface Sci; 2003 Sep; 265(2):439-43. PubMed ID: 12962680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces.
    Li J; Li W; Tang X; Han X; Wang L
    Langmuir; 2021 Jul; 37(28):8607-8615. PubMed ID: 34213350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Water Nucleation and Growth Based on Microdroplet Mobility on Lubricant-Infused Surfaces.
    Sun J; Jiang X; Weisensee PB
    Langmuir; 2021 Nov; 37(44):12790-12801. PubMed ID: 34699236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloaking Transition of Droplets on Lubricated Brushes.
    Badr RGM; Hauer L; Vollmer D; Schmid F
    J Phys Chem B; 2022 Sep; 126(36):7047-7058. PubMed ID: 36062355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergent Collective Motion of Self-Propelled Condensate Droplets.
    Lin M; Kim P; Arunachalam S; Hardian R; Adera S; Aizenberg J; Yao X; Daniel D
    Phys Rev Lett; 2024 Feb; 132(5):058203. PubMed ID: 38364153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal.
    Li H; Aili A; Alhosani MH; Ge Q; Zhang T
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20910-20919. PubMed ID: 29792417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.