BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37596305)

  • 1. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression.
    Lazniewska J; Li KL; Johnson IRD; Sorvina A; Logan JM; Martini C; Moore C; Ung BS; Karageorgos L; Hickey SM; Prabhakaran S; Heatlie JK; Brooks RD; Huzzell C; Warnock NI; Ward MP; Mohammed B; Tewari P; Martin C; O'Toole S; Edgerton LB; Bates M; Moretti P; Pitson SM; Selemidis S; Butler LM; O'Leary JJ; Brooks DA
    Sci Rep; 2023 Aug; 13(1):13489. PubMed ID: 37596305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syndecan-1, a new target molecule involved in progression of androgen-independent prostate cancer.
    Shimada K; Nakamura M; De Velasco MA; Tanaka M; Ouji Y; Konishi N
    Cancer Sci; 2009 Jul; 100(7):1248-54. PubMed ID: 19432893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress.
    Gonzalez-Menendez P; Hevia D; Alonso-Arias R; Alvarez-Artime A; Rodriguez-Garcia A; Kinet S; Gonzalez-Pola I; Taylor N; Mayo JC; Sainz RM
    Redox Biol; 2018 Jul; 17():112-127. PubMed ID: 29684818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appl1, Sortilin and Syndecan-1 immunohistochemistry on intraductal carcinoma of the prostate provides evidence of retrograde spread.
    Sorvina A; Martini C; Prabhakaran S; Logan JM; S-Y Ung B; Moore C; Johnson IRD; Lazniewska J; Tewari P; Malone V; Brooks RD; Hickey SM; Caruso MC; Klebe S; Karageorgos L; O'Leary JJ; Delahunt B; Samaratunga H; Brooks DA
    Pathology; 2023 Oct; 55(6):792-799. PubMed ID: 37422404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells.
    Sasaki T; Yoshikawa Y; Kageyama T; Sugino Y; Kato M; Masui S; Nishikawa K; Inoue T
    Prostate; 2023 Mar; 83(4):364-375. PubMed ID: 36479717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation.
    Cardoso HJ; Figueira MI; Vaz CV; Carvalho TMA; Brás LA; Madureira PA; Oliveira PJ; Sardão VA; Socorro S
    Cell Oncol (Dordr); 2021 Apr; 44(2):385-403. PubMed ID: 33464483
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Chen X; Ma J; Wang X; Zi T; Qian D; Li C; Xu C
    Front Endocrinol (Lausanne); 2022; 13():1106175. PubMed ID: 36601001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer.
    O'Reilly D; Downing T; Kouba S; Potier-Cartereau M; McKenna DJ; Vandier C; Buchanan PJ
    Cell Calcium; 2022 May; 103():102554. PubMed ID: 35193095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.
    Tanimoto R; Morcavallo A; Terracciano M; Xu SQ; Stefanello M; Buraschi S; Lu KG; Bagley DH; Gomella LG; Scotlandi K; Belfiore A; Iozzo RV; Morrione A
    Endocrinology; 2015 Jan; 156(1):58-70. PubMed ID: 25365768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant protein expression of Appl1, Sortilin and Syndecan-1 during the biological progression of prostate cancer.
    Martini C; Logan JM; Sorvina A; Gordon C; Beck AR; S-Y Ung B; Caruso MC; Moore C; Hocking A; Johnson IRD; Li KL; Karageorgos L; Hopkins AM; Esterman AJ; Huzzell C; Brooks RD; Lazniewska J; Hickey SM; Bader C; Parkinson-Lawrence E; Weigert R; Sorich MJ; Tewari P; Martin C; O'Toole S; Bates M; Ward M; Mohammed B; Keegan H; Watson W; Prendergast S; Heffernan S; NiMhaolcatha S; O'Connor R; Malone V; Carter M; Ryan K; Brady N; Clarke A; Sokol F; Prabhakaran S; Stahl J; Klebe S; Samaratunga H; Delahunt B; Selemidis S; Moretti KL; Butler LM; O'Leary JJ; Brooks DA
    Pathology; 2023 Feb; 55(1):40-51. PubMed ID: 36089417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen action in the prostate gland.
    Yadav N; Heemers HV
    Minerva Urol Nefrol; 2012 Mar; 64(1):35-49. PubMed ID: 22402316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-existing Castration-resistant Prostate Cancer-like Cells in Primary Prostate Cancer Promote Resistance to Hormonal Therapy.
    Cheng Q; Butler W; Zhou Y; Zhang H; Tang L; Perkinson K; Chen X; Jiang XS; McCall SJ; Inman BA; Huang J
    Eur Urol; 2022 May; 81(5):446-455. PubMed ID: 35058087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer.
    Fujii T; Shimada K; Tatsumi Y; Fujimoto K; Konishi N
    Biochem Biophys Res Commun; 2015 Jan; 456(1):183-9. PubMed ID: 25462564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer.
    Gannon PO; Godin-Ethier J; Hassler M; Delvoye N; Aversa M; Poisson AO; Péant B; Alam Fahmy M; Saad F; Lapointe R; Mes-Masson AM
    PLoS One; 2010 Aug; 5(8):e12107. PubMed ID: 20711410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer.
    Shima T; Mizokami A; Miyagi T; Kawai K; Izumi K; Kumaki M; Ofude M; Zhang J; Keller ET; Namiki M
    Prostate; 2012 Dec; 72(16):1789-801. PubMed ID: 22549914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer.
    Saraon P; Musrap N; Cretu D; Karagiannis GS; Batruch I; Smith C; Drabovich AP; Trudel D; van der Kwast T; Morrissey C; Jarvi KA; Diamandis EP
    J Biol Chem; 2012 Oct; 287(41):34019-31. PubMed ID: 22908226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation.
    Lin Q; Cao J; Du X; Yang K; Yang X; Liang Z; Shi J; Zhang J
    Cell Commun Signal; 2022 Mar; 20(1):31. PubMed ID: 35292057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic role of PFKFB4 in androgen-independent growth in vitro and PFKFB4 expression in human prostate cancer tissue.
    Li X; Chen Z; Li Z; Huang G; Lin J; Wei Q; Liang J; Li W
    BMC Urol; 2020 Jun; 20(1):61. PubMed ID: 32487245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A.
    Natani S; Ramakrishna M; Nallavolu T; Ummanni R
    Prostate; 2023 Jul; 83(10):936-949. PubMed ID: 37069746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile.
    Vaz CV; Alves MG; Marques R; Moreira PI; Oliveira PF; Maia CJ; Socorro S
    Int J Biochem Cell Biol; 2012 Nov; 44(11):2077-84. PubMed ID: 22964025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.