These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37596330)

  • 1. Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap.
    Solomenko AG; Sahalianov IY; Radchenko TM; Tatarenko VA
    Sci Rep; 2023 Aug; 13(1):13444. PubMed ID: 37596330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles studies of the strain-induced band-gap tuning in black phosphorene.
    Galicia Hernandez JM; Sanchez JG; Fernandez Escamilla HN; Cocoletzi GH; Takeuchi N
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33470975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear interband optical refraction and absorption in strained black phosphorene.
    Yarmohammadi M; Mortezaei Nobahari M; Tien TS; Phuong LTT
    J Phys Condens Matter; 2020 Aug; 32(46):. PubMed ID: 32731205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-induced Dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne.
    Cui HJ; Sheng XL; Yan QB; Zheng QR; Su G
    Phys Chem Chem Phys; 2013 Jun; 15(21):8179-85. PubMed ID: 23604005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene.
    Yarmohammadi M; Hoi BD; Phuong LTT
    Sci Rep; 2021 Feb; 11(1):3716. PubMed ID: 33580112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures.
    Li Y; Ma F
    Phys Chem Chem Phys; 2017 May; 19(19):12466-12472. PubMed ID: 28470311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.
    Sa B; Li YL; Sun Z; Qi J; Wen C; Wu B
    Nanotechnology; 2015 May; 26(21):215205. PubMed ID: 25948165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.
    Zhuang J; Liu C; Gao Q; Liu Y; Feng H; Xu X; Wang J; Zhao J; Dou SX; Hu Z; Du Y
    ACS Nano; 2018 May; 12(5):5059-5065. PubMed ID: 29741870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonorthogonal [Formula: see text] tight-binding parameterization of single-layer phosphorene under biaxial strain and application to FETs.
    Lee J; Seo J; Oh JH; Shin M
    Nanotechnology; 2016 Jun; 27(24):245202. PubMed ID: 27159924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band-gap tunability and dynamical instability in strained monolayer and bilayer phosphorenes.
    Huang GQ; Xing ZW
    J Phys Condens Matter; 2015 May; 27(17):175006. PubMed ID: 25835749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional GeS with tunable electronic properties via external electric field and strain.
    Zhang S; Wang N; Liu S; Huang S; Zhou W; Cai B; Xie M; Yang Q; Chen X; Zeng H
    Nanotechnology; 2016 Jul; 27(27):274001. PubMed ID: 27232104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Separation of Carriers in the GeS/SnS Lateral Heterostructure by Uniaxial Tensile Strain.
    Peng L; Wang C; Qian Q; Bi C; Wang S; Huang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40969-40977. PubMed ID: 29083148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hittorf's violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization.
    Lu YL; Dong S; Zhou W; Dai S; Zhou B; Zhao H; Wu P
    Phys Chem Chem Phys; 2018 May; 20(17):11967-11975. PubMed ID: 29670965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-dependent band alignment and work function of few-layer phosphorene.
    Cai Y; Zhang G; Zhang YW
    Sci Rep; 2014 Oct; 4():6677. PubMed ID: 25327586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Study on the Structural and Electronic Properties of Monolayer MoS₂ with S-Vacancy under Uniaxial Tensile Strain.
    Wang W; Yang C; Bai L; Li M; Li W
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.