These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37596341)

  • 1. Non-linear finite element modeling of damages in bridge piers subjected to lateral monotonic loading.
    Ahmad A; Ahmed A; Iqbal M; Ali SM; Khan G; Eldin SM; Yosri AM
    Sci Rep; 2023 Aug; 13(1):13461. PubMed ID: 37596341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Numerical Study of Static Behavior of Precast Segmental Hollow Bridge Piers.
    Lu W; Peng WQ; Zhu L; Gao C; Tang YD; Zhou YW; Su W; Zeng B
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic collapse assessment of bridge piers constructed with steel fibers reinforced concrete.
    Pang Y; Li L
    PLoS One; 2018; 13(7):e0200072. PubMed ID: 29990364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lumped Plasticity Model and Hysteretic Performance of Ultra-High-Performance Concrete Rocking Pier.
    He H; Zhou Y; Cheng S; Liu H
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings.
    Wang C; Qu Z; Shen Y; Jiang J; Yin C; Zong Y
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasistatic Analysis of Precast Segmental Concrete-Filled Steel-Tube Bridge Pier with External Arched Energy Dissipation Device.
    Wang C; Zong Y; Zou Y; Shen Y; Jiang J; Yin C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigations on Seismic Behavior of Segmental Assembly of Concrete Filled Steel Tube Piers with External Replaceable Energy-Dissipating Links.
    Wang C; Yin C; Zou Y; Ping B; Wu X; Liao J; Sun M
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Hazard-Resistant Behavior of CFRP- and Polyurea-Retrofitted Reinforced Concrete Two-Column Piers under Combined Collision-Blast Loading.
    Fang C; Yosef TY; Linzell DG
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seismic Performance of Bridge Piers Constructed with PP-ECC at Potential Plastic Hinge Regions.
    Jia Y; Zhao R; Li F; Zhou Z; Wang Y; Zhan Y; Shi X
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical Hysteretic Behavior of Square Concrete-Filled Steel Tube Pier Columns under Alternate Sulfate Corrosion and Freeze-Thaw Cycles.
    Zhang T; Wen Q; Gao L; Xu Q; Tang J
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-static testing of UHPC cupped socket piers-footing connection and its seismic fragility analysis under near-fault ground motions.
    Yang D; Wu Z; Zuo R; Li J; Xie H; Zhang Y
    Sci Rep; 2024 May; 14(1):10903. PubMed ID: 38740773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seismic response of benchmark high-speed rail (HSR) round-ended rectangular-shaped cross-section solid (RERSCSS) concrete pier based on the shaking table tests.
    Chen L; Jiang L; Kang X; Hu X; Huang X; Xu L; Sun L; Wang L; Tian Y; Zhai C
    Sci Rep; 2022 Nov; 12(1):19611. PubMed ID: 36380132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical analysis of inclination and rectification of ramp-bridge piers adjacent to surcharge load in soft clay area.
    Shen B; Mao D; Ding Y; Wang L; Li Z
    Sci Rep; 2023 Jun; 13(1):9614. PubMed ID: 37316641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure Analysis for Overall Overturning of Concrete Single-Column Pier Bridges Induced by Temperature and Overloaded Vehicles.
    Wang Y; Zhou Y; Xue Y; Yao C; Wang K; Luo X
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP)- Reinforced Self-Compacting Concrete (SCC) Decks Slabs in Thompson Bridge.
    Zhou L; Zheng Y; Taylor SE
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seismic Response of Resilient Bridges with SMA-Based Rocking ECC-Reinforced Piers.
    Li X; Chen K; Chen J; Li Y; Yang D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law.
    Alrayes O; Könke C; Ooi ET; Hamdia KM
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Residual Flexural Stiffness of Steel Fiber-Reinforced Concrete Beams with Steel Reinforcement.
    Kytinou VK; Chalioris CE; Karayannis CG
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on the Axial Compression Performance of an Underwater Concrete Pier Strengthened by Self-Stressed Anti-Washout Concrete and Segments.
    Wu S; Ge Y; Jiang S; Shen S; Zhang H
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Finite Element Modeling Strategy to Capture Cracking and Crushing Behavior of Reinforced Concrete Structures.
    Mathern A; Yang J
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33494296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.