These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37596970)
21. The bacteria of the sulphur cycle. Pfennig N; Widdel F Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734 [TBL] [Abstract][Full Text] [Related]
22. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). Fourçans A; de Oteyza TG; Wieland A; Solé A; Diestra E; van Bleijswijk J; Grimalt JO; Kühl M; Esteve I; Muyzer G; Caumette P; Duran R FEMS Microbiol Ecol; 2004 Dec; 51(1):55-70. PubMed ID: 16329855 [TBL] [Abstract][Full Text] [Related]
23. Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies. Camacho A; Rochera C; Silvestre JJ; Vicente E; Hahn MW Microb Ecol; 2005 Aug; 50(2):172-84. PubMed ID: 16211325 [TBL] [Abstract][Full Text] [Related]
24. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Hamilton TL Free Radic Biol Med; 2019 Aug; 140():233-249. PubMed ID: 31078729 [TBL] [Abstract][Full Text] [Related]
25. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Hamilton TL; Bryant DA; Macalady JL Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614 [TBL] [Abstract][Full Text] [Related]
26. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Haas S; de Beer D; Klatt JM; Fink A; Rench RM; Hamilton TL; Meyer V; Kakuk B; Macalady JL Front Microbiol; 2018; 9():858. PubMed ID: 29755448 [TBL] [Abstract][Full Text] [Related]
27. Shotgun metagenomic sequencing reveals the full taxonomic, trophic, and functional diversity of a coral reef benthic cyanobacterial mat from Bonaire, Caribbean Netherlands. Cissell EC; McCoy SJ Sci Total Environ; 2021 Feb; 755(Pt 1):142719. PubMed ID: 33077235 [TBL] [Abstract][Full Text] [Related]
28. Photosynthetic Versatility in the Genome of Grim SL; Dick GJ Front Microbiol; 2016; 7():1546. PubMed ID: 27790189 [TBL] [Abstract][Full Text] [Related]
29. Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures. Visscher PT; Baumgartner LK; Buckley DH; Rogers DR; Hogan ME; Raleigh CD; Turk KA; Des Marais DJ Environ Microbiol; 2003 Apr; 5(4):296-308. PubMed ID: 12662177 [TBL] [Abstract][Full Text] [Related]
31. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Wieland A; Zopfi J; Benthien M; Kühl M Microb Ecol; 2005 Jan; 49(1):34-49. PubMed ID: 15614465 [TBL] [Abstract][Full Text] [Related]
32. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
33. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Roeselers G; Norris TB; Castenholz RW; Rysgaard S; Glud RN; Kühl M; Muyzer G Environ Microbiol; 2007 Jan; 9(1):26-38. PubMed ID: 17227409 [TBL] [Abstract][Full Text] [Related]
34. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral. Myers JL; Richardson LL FEMS Microbiol Ecol; 2009 Feb; 67(2):242-51. PubMed ID: 19049501 [TBL] [Abstract][Full Text] [Related]
35. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. Decker KL; Potter CS; Bebout BM; Marais DJ; Carpenter S; Discipulo M; Hoehler TM; Miller SR; Thamdrup B; Turk KA; Visscher PT FEMS Microbiol Ecol; 2005 May; 52(3):377-95. PubMed ID: 16329922 [TBL] [Abstract][Full Text] [Related]
36. Analysis of bacterioplankton genes in an impaired Great Lakes harbour reveals seasonal metabolic shifts and a previously undetected cyanobacterium. Palermo CN; Fulthorpe RR; Saati R; Short SM Can J Microbiol; 2023 Aug; 69(8):281-295. PubMed ID: 37054443 [TBL] [Abstract][Full Text] [Related]
37. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate. Brunner B; Einsiedl F; Arnold GL; Müller I; Templer S; Bernasconi SM Isotopes Environ Health Stud; 2012; 48(1):33-54. PubMed ID: 22128782 [TBL] [Abstract][Full Text] [Related]
38. Microcosm experiments of oil degradation by microbial mats. II. The changes in microbial species. Llirós M; Gaju N; de Oteyza TG; Grimalt JO; Esteve I; Martínez-Alonso M Sci Total Environ; 2008 Apr; 393(1):39-49. PubMed ID: 18237762 [TBL] [Abstract][Full Text] [Related]
39. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Abed RM; Kohls K; de Beer D Environ Microbiol; 2007 Jun; 9(6):1384-92. PubMed ID: 17504476 [TBL] [Abstract][Full Text] [Related]
40. Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah. Kanik M; Munro-Ehrlich M; Fernandes-Martins MC; Payne D; Gianoulias K; Keller L; Kubacki A; Lindsay MR; Baxter BK; Vanden Berg MD; Colman DR; Boyd ES Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32198176 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]