BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37596986)

  • 1. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights.
    Sa P; Mohapatra P; Swain SS; Khuntia A; Sahoo SK
    Mol Pharm; 2023 Nov; 20(11):5254-5277. PubMed ID: 37596986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells.
    Mohapatra P; Singh P; Sahoo SK
    Drug Discov Today; 2020 Aug; 25(8):1307-1321. PubMed ID: 32554061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular insights into phytochemicals-driven break function in tumor microenvironment.
    Rana P; Shrama A; Mandal CC
    J Food Biochem; 2021 Sep; 45(9):e13824. PubMed ID: 34219240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance.
    Sa P; Sahoo SK; Dilnawaz F
    Curr Med Chem; 2023; 30(29):3335-3355. PubMed ID: 36154585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment.
    Gao Q; Feng J; Liu W; Wen C; Wu Y; Liao Q; Zou L; Sui X; Xie T; Zhang J; Hu Y
    Adv Drug Deliv Rev; 2022 Sep; 188():114445. PubMed ID: 35820601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytonanomedicine as a therapeutic regulator of the tumor microenvironment for inhibiting cancer metastasis.
    Sahoo S; Sahoo SK
    Nanomedicine (Lond); 2024 Apr; ():. PubMed ID: 38686943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS-Responsive Nanomedicine: Towards Targeting the Breast Tumor Microenvironment.
    Malla RR; Kamal MA
    Curr Med Chem; 2021; 28(28):5674-5698. PubMed ID: 33297907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors.
    Xu Q; Lan X; Lin H; Xi Q; Wang M; Quan X; Yao G; Yu Z; Wang Y; Yu M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e1842. PubMed ID: 35989568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer.
    Li YJ; Wu JY; Wang JM; Xiang DX
    J Control Release; 2020 Apr; 320():105-111. PubMed ID: 31978441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling tumor microenvironment with nanomedicines.
    Martin JD; Miyazaki T; Cabral H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1730. PubMed ID: 34124849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling metastatic cancer: the role of phytochemicals in cell signaling.
    Kapinova A; Kubatka P; Liskova A; Baranenko D; Kruzliak P; Matta M; Büsselberg D; Malicherova B; Zulli A; Kwon TK; Jezkova E; Blahutova D; Zubor P; Danko J
    J Cancer Res Clin Oncol; 2019 May; 145(5):1087-1109. PubMed ID: 30903319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance.
    Fakhri S; Moradi SZ; Faraji F; Farhadi T; Hesami O; Iranpanah A; Webber K; Bishayee A
    Cancer Metastasis Rev; 2023 Sep; 42(3):959-1020. PubMed ID: 37505336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities.
    Mehraj U; Ganai RA; Macha MA; Hamid A; Zargar MA; Bhat AA; Nasser MW; Haris M; Batra SK; Alshehri B; Al-Baradie RS; Mir MA; Wani NA
    Cell Oncol (Dordr); 2021 Dec; 44(6):1209-1229. PubMed ID: 34528143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochemical based nanomedicines against cancer: current status and future prospects.
    Rizwanullah M; Amin S; Mir SR; Fakhri KU; Rizvi MMA
    J Drug Target; 2018 Nov; 26(9):731-752. PubMed ID: 29157022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation.
    Xie L; Li J; Wang L; Dai Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1864. PubMed ID: 36333962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
    Chen S; Yang K; Tuguntaev RG; Mozhi A; Zhang J; Wang PC; Liang XJ
    Nanomedicine; 2016 Feb; 12(2):269-86. PubMed ID: 26707818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopolymer-based tumor microenvironment-responsive nanomedicine for targeted cancer therapy.
    Jha A; Kumar M; Bharti K; Manjit M; Mishra B
    Nanomedicine (Lond); 2024 Mar; 19(7):633-651. PubMed ID: 38445583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Tumor Microenvironment for Cancer Therapy.
    Roma-Rodrigues C; Mendes R; Baptista PV; Fernandes AR
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.
    Zanganeh S; Spitler R; Hutter G; Ho JQ; Pauliah M; Mahmoudi M
    Immunotherapy; 2017 Sep; 9(10):819-835. PubMed ID: 28877626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine.
    Imparato G; Urciuolo F; Mazio C; Netti PA
    Lab Chip; 2022 Dec; 23(1):25-43. PubMed ID: 36305728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.