BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37597126)

  • 21. Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks.
    Tian M; Wang H; Liu X; Ye Y; Ouyang G; Shen Y; Li Z; Wang X; Wu S
    Med Phys; 2023 Oct; 50(10):6354-6365. PubMed ID: 37246619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer.
    Rigaud B; Anderson BM; Yu ZH; Gobeli M; Cazoulat G; Söderberg J; Samuelsson E; Lidberg D; Ward C; Taku N; Cardenas C; Rhee DJ; Venkatesan AM; Peterson CB; Court L; Svensson S; Löfman F; Klopp AH; Brock KK
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(4):1096-1110. PubMed ID: 33181248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.
    Choi MS; Choi BS; Chung SY; Kim N; Chun J; Kim YB; Chang JS; Kim JS
    Radiother Oncol; 2020 Dec; 153():139-145. PubMed ID: 32991916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow.
    Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762
    [No Abstract]   [Full Text] [Related]  

  • 26. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients.
    Wang Z; Chang Y; Peng Z; Lv Y; Shi W; Wang F; Pei X; Xu XG
    J Appl Clin Med Phys; 2020 Dec; 21(12):272-279. PubMed ID: 33238060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer.
    Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y
    Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457
    [No Abstract]   [Full Text] [Related]  

  • 30. Automatic end-to-end VMAT treatment planning for rectal cancers.
    Huang K; Chung C; Ludmir EB; Zhang L; Owens CA; Vega JG; Duryea J; Zhao Y; Chen X; Fuentes D; Cardenas CE; Briere TM; Beddar S; Court LE; Das P
    J Appl Clin Med Phys; 2024 Apr; 25(4):e14259. PubMed ID: 38317597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.
    Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D
    Z Med Phys; 2024 May; 34(2):197-207. PubMed ID: 37263911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometric and dosimetric evaluation of deep learning based auto-segmentation for clinical target volume on breast cancer.
    Zhong Y; Guo Y; Fang Y; Wu Z; Wang J; Hu W
    J Appl Clin Med Phys; 2023 Jul; 24(7):e13951. PubMed ID: 36920901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy.
    Wu Y; Kang K; Han C; Wang S; Chen Q; Chen Y; Zhang F; Liu Z
    Cancer Med; 2022 Jan; 11(1):166-175. PubMed ID: 34811957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy.
    Xiao C; Jin J; Yi J; Han C; Zhou Y; Ai Y; Xie C; Jin X
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13631. PubMed ID: 35533205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation.
    Marschner S; Datar M; Gaasch A; Xu Z; Grbic S; Chabin G; Geiger B; Rosenman J; Corradini S; Niyazi M; Heimann T; Möhler C; Vega F; Belka C; Thieke C
    Radiat Oncol; 2022 Jul; 17(1):129. PubMed ID: 35869525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer.
    Bakx N; Rijkaart D; van der Sangen M; Theuws J; van der Toorn PP; Verrijssen AS; van der Leer J; Mutsaers J; van Nunen T; Reinders M; Schuengel I; Smits J; Hagelaar E; van Gruijthuijsen D; Bluemink H; Hurkmans C
    Tech Innov Patient Support Radiat Oncol; 2023 Jun; 26():100211. PubMed ID: 37229460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Validation and Treatment Plan Evaluation Based on Autodelineation of the Clinical Target Volume for Prostate Cancer Radiotherapy.
    Shen J; Tao Y; Guan H; Zhen H; He L; Dong T; Wang S; Chen Y; Chen Q; Liu Z; Zhang F
    Technol Cancer Res Treat; 2023; 22():15330338231164883. PubMed ID: 36991566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.