These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37597387)

  • 1. Heterogeneous aggregation of carbon and silicon nanoparticles with benzo[a]pyrene modulates their impacts on the pulmonary surfactant film.
    Wang W; Luo Z; Liu X; Dai Y; Hu G; Zhao J; Yue T
    J Hazard Mater; 2023 Oct; 459():132340. PubMed ID: 37597387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive and/or cooperative interactions of graphene-family materials and benzo[a]pyrene with pulmonary surfactant: a computational and experimental study.
    Yue T; Lv R; Xu D; Xu Y; Liu L; Dai Y; Zhao J; Xing B
    Part Fibre Toxicol; 2021 Dec; 18(1):46. PubMed ID: 34915923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual role of pulmonary surfactant corona in modulating carbon nanotube toxicity and benzo[a]pyrene bioaccessibility.
    Luo Z; Xu D; Xu Y; Zhao J; Hu G; Yue T
    J Hazard Mater; 2023 Sep; 457():131753. PubMed ID: 37279644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health.
    Cao Y; Zhao Q; Geng Y; Li Y; Huang J; Tian S; Ning P
    Environ Pollut; 2021 Oct; 287():117669. PubMed ID: 34426389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.
    Fan Q; Wang YE; Zhao X; Loo JS; Zuo YY
    ACS Nano; 2011 Aug; 5(8):6410-6. PubMed ID: 21761867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the cellular toxicity of benzo[
    Ji Y; Wang Y; Shen D; Kang Q; Ma J; Chen L
    Nanoscale; 2021 Jan; 13(2):1016-1028. PubMed ID: 33393578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles.
    Hu Q; Bai X; Hu G; Zuo YY
    ACS Nano; 2017 Jul; 11(7):6832-6842. PubMed ID: 28541666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition.
    Yang Y; Xu L; Dekkers S; Zhang LG; Cassee FR; Zuo YY
    Environ Sci Technol; 2018 Aug; 52(15):8920-8929. PubMed ID: 30011188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles.
    Zhao Q; Li Y; Chai X; Zhang L; Xu L; Huang J; Ning P; Tian S
    Chemosphere; 2019 Jan; 215():746-752. PubMed ID: 30352372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    He XM; Zhu GT; Yin J; Zhao Q; Yuan BF; Feng YQ
    J Chromatogr A; 2014 Jul; 1351():29-36. PubMed ID: 24908155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.
    Valle RP; Wu T; Zuo YY
    ACS Nano; 2015 May; 9(5):5413-21. PubMed ID: 25929264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of DPPG in lung surfactant exposed to benzo[a]pyrene.
    Korchowiec B; Stachowicz-Kuśnierz A; Korchowiec J
    Environ Sci Process Impacts; 2019 Mar; 21(3):438-445. PubMed ID: 30729964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.
    Sachan AK; Harishchandra RK; Bantz C; Maskos M; Reichelt R; Galla HJ
    ACS Nano; 2012 Feb; 6(2):1677-87. PubMed ID: 22288983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Lung Surfactant Interactions with Benzo[a]pyrene.
    Stachowicz-Kuśnierz A; Trojan S; Cwiklik L; Korchowiec B; Korchowiec J
    Chemistry; 2017 Apr; 23(22):5307-5316. PubMed ID: 28230285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film.
    Hu Q; Jiao B; Shi X; Valle RP; Zuo YY; Hu G
    Nanoscale; 2015 Nov; 7(43):18025-9. PubMed ID: 26482703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system.
    Sosnowski TR; Koliński M; Gradón L
    Ann Occup Hyg; 2011 Apr; 55(3):329-38. PubMed ID: 21402870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polystyrene nanoplastics and microplastics can act as Trojan horse carriers of benzo(a)pyrene to mussel hemocytes in vitro.
    Katsumiti A; Losada-Carrillo MP; Barros M; Cajaraville MP
    Sci Rep; 2021 Nov; 11(1):22396. PubMed ID: 34789853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles.
    Kondej D; Sosnowski TR
    Inhal Toxicol; 2013 Feb; 25(2):77-83. PubMed ID: 23363039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.