BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37597537)

  • 1. Environmental impact of solution pH on the formation and migration of iron colloids in deep subsurface energy systems.
    Spielman-Sun E; Bland G; Wielinski J; Frouté L; Kovscek AR; Lowry GV; Bargar JR; Noël V
    Sci Total Environ; 2023 Dec; 902():166409. PubMed ID: 37597537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.
    Kreisserman Y; Emmanuel S
    Environ Sci Technol; 2018 Jan; 52(2):638-643. PubMed ID: 29227634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale.
    Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY
    Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the Stoichiometry of Individual Metal Sulfide and Phosphate Colloids in Soils, Sediments, and Industrial Processes by Inductively Coupled Plasma Time-of-Flight Mass Spectrometry.
    Wielinski J; Huang X; Lowry GV
    Environ Sci Technol; 2024 Jun; ():. PubMed ID: 38917351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Pyrite Oxidation on the Pore-Structure Characteristics of Shale Reservoir Rocks under the Interaction of Fracturing Fluid.
    Sun Z; Ni Y; Wu Y; Lei Y
    ACS Omega; 2022 Aug; 7(30):26549-26559. PubMed ID: 35936473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales.
    Jew AD; Druhan JL; Ihme M; Kovscek AR; Battiato I; Kaszuba JP; Bargar JR; Brown GE
    Chem Rev; 2022 May; 122(9):9198-9263. PubMed ID: 35404590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical controls on CO
    Sharma S; Agrawal V; McGrath S; Hakala JA; Lopano C; Goodman A
    Environ Sci Process Impacts; 2021 Sep; 23(9):1278-1300. PubMed ID: 34553724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of hydraulic fracturing additive 2-butoxyethanol using heat activated persulfate in the presence of shale rock.
    Manz KE; Carter KE
    Chemosphere; 2018 Sep; 206():398-404. PubMed ID: 29754064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Element mobilization from Bakken shales as a function of water chemistry.
    Wang L; Burns S; Giammar DE; Fortner JD
    Chemosphere; 2016 Apr; 149():286-93. PubMed ID: 26866966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrofracking fluid on colloid transport in the unsaturated zone.
    Sang W; Stoof CR; Zhang W; Morales VL; Gao B; Kay RW; Liu L; Zhang Y; Steenhuis TS
    Environ Sci Technol; 2014 Jul; 48(14):8266-74. PubMed ID: 24905470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir.
    Osselin F; Saad S; Nightingale M; Hearn G; Desaulty AM; Gaucher EC; Clarkson CR; Kloppmann W; Mayer B
    Sci Total Environ; 2019 Oct; 687():1389-1400. PubMed ID: 31412472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.
    Paukert Vankeuren AN; Hakala JA; Jarvis K; Moore JE
    Environ Sci Technol; 2017 Aug; 51(16):9391-9402. PubMed ID: 28723084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of isotopic and geochemical signals in unconventional oil and gas reservoir produced waters toward characterizing in situ geochemical fluid-shale reactions.
    Phan TT; Hakala JA; Sharma S
    Sci Total Environ; 2020 Apr; 714():136867. PubMed ID: 32018991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saltwater intrusion weakens Fe-(oxyhydr)oxide-mediated (im)mobilization of Ni and Zn in redox-fluctuating soil-groundwater system.
    Zhu L; Zhang X; Zhang J; Liu T; Qiu Y
    Water Res; 2022 Aug; 221():118799. PubMed ID: 35780765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron colloidal transport mechanisms and sequestration of As, Ni, and Cu along AMD-induced environmental gradients.
    Fan L; Zhu T; Yang Y; Han T; Qiao Z; Huang X; Zhai W; Pan X; Zhang D
    Sci Total Environ; 2023 Nov; 898():165513. PubMed ID: 37451442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and composition of natural ferrihydrite nano-colloids in anoxic groundwater.
    Engel M; Noël V; Pierce S; Kovarik L; Kukkadapu RK; Pacheco JSL; Qafoku O; Runyon JR; Chorover J; Zhou W; Cliff J; Boye K; Bargar JR
    Water Res; 2023 Jun; 238():119990. PubMed ID: 37146398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.
    Majumder S; Nath B; Sarkar S; Chatterjee D; Roman-Ross G; Hidalgo M
    Sci Total Environ; 2014 Jan; 468-469():804-12. PubMed ID: 24070874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.