These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37597552)

  • 81. Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants.
    Huxman TE; Barron-Gafford G; Gerst KL; Angert AL; Tyler AP; Venable DL
    Ecology; 2008 Jun; 89(6):1554-63. PubMed ID: 18589520
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Controls over foliar N:P ratios in tropical rain forests.
    Townsend AR; Cleveland CC; Asner GP; Bustamante MM
    Ecology; 2007 Jan; 88(1):107-18. PubMed ID: 17489459
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum.
    Huang J; Boerner RE
    Oecologia; 2007 Aug; 153(2):233-43. PubMed ID: 17453253
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phosphorus nutrition in Proteaceae and beyond.
    Lambers H; Finnegan PM; Jost R; Plaxton WC; Shane MW; Stitt M
    Nat Plants; 2015 Aug; 1():15109. PubMed ID: 27250542
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Contrasting patterns of photosynthetic acclimation and photoinhibition in two evergreen herbs from a winter deciduous forest.
    Skillman JB; Strain BR; Osmond CB
    Oecologia; 1996 Sep; 107(4):446-455. PubMed ID: 28307386
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effects of contrasting N-enriched biochar applications on paddy soil and rice leaf phosphorus fractions in subtropical China.
    Hei J; Xie H; LiumingYang ; Wang W; Sardans J; Wang C; Tariq A; Zeng F; Peñuelas J
    Sci Total Environ; 2023 Jun; 877():162949. PubMed ID: 36934931
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of dry-season irrigation on leaf physiology and biomass allocation in tropical lianas and trees.
    Smith-Martin CM; Bastos CL; Lopez OR; Powers JS; Schnitzer SA
    Ecology; 2019 Nov; 100(11):e02827. PubMed ID: 31325383
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii.
    Cordell S; Goldstein G; Meinzer FC; Vitousek PM
    Oecologia; 2001 Apr; 127(2):198-206. PubMed ID: 24577650
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Variation in photosynthetic traits related to access to water in semiarid Australian woody species.
    Nolan RH; Tarin T; Fairweather KA; Cleverly J; Eamus D
    Funct Plant Biol; 2017 Oct; 44(11):1087-1097. PubMed ID: 32480635
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China.
    Zhu SD; Cao KF
    Oecologia; 2010 Jul; 163(3):591-9. PubMed ID: 20191291
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Coordinating leaf functional traits with branch hydraulic conductivity: resource substitution and implications for carbon gain.
    Taylor D; Eamus D
    Tree Physiol; 2008 Aug; 28(8):1169-77. PubMed ID: 18519248
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth.
    Shane MW; Cramer MD; Lambers H
    Plant Cell Environ; 2008 Dec; 31(12):1825-33. PubMed ID: 18811734
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.
    Niinemets U; Wright IJ; Evans JR
    J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Data on foliar nutrient concentration of invasive plants in the recipient habitat and their native habitat.
    Soti P; Purcell MF; Jayachandran K
    Data Brief; 2019 Aug; 25():104201. PubMed ID: 31467947
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Phenological variation of leaf functional traits within species.
    Fajardo A; Siefert A
    Oecologia; 2016 Apr; 180(4):951-9. PubMed ID: 26796408
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Linking above- and belowground traits to soil and climate variables: an integrated database on China's grassland species.
    Geng Y; Ma W; Wang L; Baumann F; Kühn P; Scholten T; He JS
    Ecology; 2017 May; 98(5):1471. PubMed ID: 28241374
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.
    Ratajczak D; Górny AG
    J Appl Genet; 2012 Nov; 53(4):377-88. PubMed ID: 22878956
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Leaf phosphorus allocation to chemical fractions and its seasonal variation in south-western Australia is a species-dependent trait.
    Liu ST; Gille CE; Bird T; Ranathunge K; Finnegan PM; Lambers H
    Sci Total Environ; 2023 Nov; 901():166395. PubMed ID: 37597552
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Growing in phosphorus-impoverished habitats in south-western Australia: How general are phosphorus-acquisition and -allocation strategies among Proteaceae, Fabaceae and Myrtaceae species?
    Shen Q; Ranathunge K; de Tombeur F; Finnegan PM; Lambers H
    Plant Cell Environ; 2024 Dec; 47(12):4683-4701. PubMed ID: 39072729
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Foliar nutrient allocation patterns in Banksia attenuata and Banksia sessilis differing in growth rate and adaptation to low-phosphorus habitats.
    Han Z; Shi J; Pang J; Yan L; Finnegan PM; Lambers H
    Ann Bot; 2021 Sep; 128(4):419-430. PubMed ID: 33534909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.