BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37597557)

  • 1. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland.
    Clarke R; Sosa A; Murphy F
    Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB.
    Milner S; Holland RA; Lovett A; Sunnenberg G; Hastings A; Smith P; Wang S; Taylor G
    Glob Change Biol Bioenergy; 2016 Mar; 8(2):317-333. PubMed ID: 27547244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the effects of land management change on productivity, carbon and nutrient balance: Application of an Ensemble Modelling Approach to the upper River Taw observatory, UK.
    Hassall KL; Coleman K; Dixit PN; Granger SJ; Zhang Y; Sharp RT; Wu L; Whitmore AP; Richter GM; Collins AL; Milne AE
    Sci Total Environ; 2022 Jun; 824():153824. PubMed ID: 35182632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of freeze-thaw cycles on greenhouse gas emissions in marginally productive agricultural land under different perennial bioenergy crops.
    Osei AK; Rezanezhad F; Oelbermann M
    J Environ Manage; 2024 Apr; 357():120739. PubMed ID: 38552522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergy crop induced changes in soil properties: A case study on Miscanthus fields in the Upper Rhine Region.
    Hu Y; Schäfer G; Duplay J; Kuhn NJ
    PLoS One; 2018; 13(7):e0200901. PubMed ID: 30048482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries.
    Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F
    J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of reduced synthetic fertiliser use under current and future climates: Exploration using integrated agroecosystem modelling in the upper River Taw observatory, UK.
    Zhang Y; Wu L; Jebari A; Collins AL
    J Environ Manage; 2024 Feb; 351():119732. PubMed ID: 38064984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.
    Hu B; Jarosch AM; Gauder M; Graeff-Hönninger S; Schnitzler JP; Grote R; Rennenberg H; Kreuzwieser J
    Environ Pollut; 2018 Jun; 237():205-217. PubMed ID: 29486454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil nitrous oxide flux following land-use reversion from Miscanthus and SRC willow to perennial ryegrass.
    McCalmont JP; Rowe R; Elias D; Whitaker J; McNamara NP; Donnison IS
    Glob Change Biol Bioenergy; 2018 Dec; 10(12):914-929. PubMed ID: 31007723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the bioenergy water footprint by selecting SRC willow canopy phenotypes: regional scenario simulations.
    Richard B; Richter GM; Cerasuolo M; Shield I
    Ann Bot; 2019 Oct; 124(4):531-542. PubMed ID: 30759181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species selection determines carbon allocation and turnover in Miscanthus crops: Implications for biomass production and C sequestration.
    Briones MJI; Massey A; Elias DMO; McCalmont JP; Farrar K; Donnison I; McNamara NP
    Sci Total Environ; 2023 Aug; 887():164003. PubMed ID: 37169185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.
    Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G
    Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?
    Kalt G; Mayer A; Theurl MC; Lauk C; Erb KH; Haberl H
    Glob Change Biol Bioenergy; 2019 Nov; 11(11):1283-1297. PubMed ID: 31762785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold dynamics in soil carbon storage for bioenergy crops.
    Woo DK; Quijano JC; Kumar P; Chaoka S; Bernacchi CJ
    Environ Sci Technol; 2014 Oct; 48(20):12090-8. PubMed ID: 25207669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?
    Jones MB; Albanito F
    Glob Chang Biol; 2020 Oct; 26(10):5358-5364. PubMed ID: 32726492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental costs and benefits of growing
    McCalmont JP; Hastings A; McNamara NP; Richter GM; Robson P; Donnison IS; Clifton-Brown J
    Glob Change Biol Bioenergy; 2017 Mar; 9(3):489-507. PubMed ID: 28331551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.
    Glithero NJ; Wilson P; Ramsden SJ
    Appl Energy; 2013 Jul; 107(100):209-218. PubMed ID: 23825896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measured and modelled effect of land-use change from temperate grassland to
    Holder AJ; Clifton-Brown J; Rowe R; Robson P; Elias D; Dondini M; McNamara NP; Donnison IS; McCalmont JP
    Glob Change Biol Bioenergy; 2019 Oct; 11(10):1173-1186. PubMed ID: 31598141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.