These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37598215)
1. APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants. Bianco SD; Parca L; Petrizzelli F; Biagini T; Giovannetti A; Liorni N; Napoli A; Carella M; Procaccio V; Lott MT; Zhang S; Vescovi AL; Wallace DC; Caputo V; Mazza T Nat Commun; 2023 Aug; 14(1):5058. PubMed ID: 37598215 [TBL] [Abstract][Full Text] [Related]
2. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides. Martín-Navarro A; Gaudioso-Simón A; Álvarez-Jarreta J; Montoya J; Mayordomo E; Ruiz-Pesini E BMC Bioinformatics; 2017 Mar; 18(1):158. PubMed ID: 28270093 [TBL] [Abstract][Full Text] [Related]
3. MitImpact: an exhaustive collection of pre-computed pathogenicity predictions of human mitochondrial non-synonymous variants. Castellana S; Rónai J; Mazza T Hum Mutat; 2015 Feb; 36(2):E2413-22. PubMed ID: 25516408 [TBL] [Abstract][Full Text] [Related]
4. Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants. Kang M; Kim S; Lee DB; Hong C; Hwang KB Sci Rep; 2023 Jun; 13(1):10478. PubMed ID: 37380723 [TBL] [Abstract][Full Text] [Related]
5. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. Castellana S; Fusilli C; Mazzoccoli G; Biagini T; Capocefalo D; Carella M; Vescovi AL; Mazza T PLoS Comput Biol; 2017 Jun; 13(6):e1005628. PubMed ID: 28640805 [TBL] [Abstract][Full Text] [Related]
6. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Pan Q; Portelli S; Nguyen TB; Ascher DB Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018912 [TBL] [Abstract][Full Text] [Related]
7. Novel gene-specific Bayesian Gaussian mixture model to predict the missense variants pathogenicity of Sanfilippo syndrome. Mohammed EEA; Fayez AG; Abdelfattah NM; Fateen E Sci Rep; 2024 May; 14(1):12148. PubMed ID: 38802532 [TBL] [Abstract][Full Text] [Related]
8. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants. Tong SY; Fan K; Zhou ZW; Liu LY; Zhang SQ; Fu Y; Wang GZ; Zhu Y; Yu YC Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):414-426. PubMed ID: 35940520 [TBL] [Abstract][Full Text] [Related]
9. Predicting the pathogenicity of missense variants using features derived from AlphaFold2. Schmidt A; Röner S; Mai K; Klinkhammer H; Kircher M; Ludwig KU Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084271 [TBL] [Abstract][Full Text] [Related]
10. MmisAT and MmisP: an efficient and accurate suite of variant analysis toolkit for primary mitochondrial diseases. Huang S; Wu Z; Wang T; Yu R; Song Z; Wang H Hum Genomics; 2023 Nov; 17(1):108. PubMed ID: 38012712 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Iqbal S; Pérez-Palma E; Jespersen JB; May P; Hoksza D; Heyne HO; Ahmed SS; Rifat ZT; Rahman MS; Lage K; Palotie A; Cottrell JR; Wagner FF; Daly MJ; Campbell AJ; Lal D Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28201-28211. PubMed ID: 33106425 [TBL] [Abstract][Full Text] [Related]
12. Impact of the Mutational Landscape of the Sodium/Iodide Symporter in Congenital Hypothyroidism. Martín M; Nicola JP Thyroid; 2021 Dec; 31(12):1776-1785. PubMed ID: 34514854 [No Abstract] [Full Text] [Related]
13. LEAP: Using machine learning to support variant classification in a clinical setting. Lai C; Zimmer AD; O'Connor R; Kim S; Chan R; van den Akker J; Zhou AY; Topper S; Mishne G Hum Mutat; 2020 Jun; 41(6):1079-1090. PubMed ID: 32176384 [TBL] [Abstract][Full Text] [Related]
14. SIGMA leverages protein structural information to predict the pathogenicity of missense variants. Zhao H; Du H; Zhao S; Chen Z; Li Y; Xu K; Liu B; Cheng X; Wen W; Li G; Chen G; Zhao Z; Qiu G; ; Liu P; Zhang TJ; Wu Z; Wu N Cell Rep Methods; 2024 Jan; 4(1):100687. PubMed ID: 38211594 [TBL] [Abstract][Full Text] [Related]
15. Missense variant pathogenicity predictors generalize well across a range of function-specific prediction challenges. Pejaver V; Mooney SD; Radivojac P Hum Mutat; 2017 Sep; 38(9):1092-1108. PubMed ID: 28508593 [TBL] [Abstract][Full Text] [Related]
16. Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Quinodoz M; Peter VG; Cisarova K; Royer-Bertrand B; Stenson PD; Cooper DN; Unger S; Superti-Furga A; Rivolta C Am J Hum Genet; 2022 Mar; 109(3):457-470. PubMed ID: 35120630 [TBL] [Abstract][Full Text] [Related]
18. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Raraigh KS; Han ST; Davis E; Evans TA; Pellicore MJ; McCague AF; Joynt AT; Lu Z; Atalar M; Sharma N; Sheridan MB; Sosnay PR; Cutting GR Am J Hum Genet; 2018 Jun; 102(6):1062-1077. PubMed ID: 29805046 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of a machine learning method based on structural and locational information from AlphaFold2 for predicting the pathogenicity of TARDBP and FUS gene variants in ALS. Hatano Y; Ishihara T; Onodera O BMC Bioinformatics; 2023 May; 24(1):206. PubMed ID: 37208601 [TBL] [Abstract][Full Text] [Related]
20. DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS. Lagniton PNP; Tam B; Wang SM Comput Methods Programs Biomed; 2023 Aug; 238():107596. PubMed ID: 37201251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]