These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37598452)
21. Transcriptomic changes and prediction of time since deposition of blood stains. Zhang J; Liu K; Wang R; Chang J; Xu X; Du M; Ye J; Yang X Forensic Sci Int; 2024 Feb; 355():111930. PubMed ID: 38271828 [TBL] [Abstract][Full Text] [Related]
22. Development of a multiplex system for the identification of forensically relevant body fluids. Liu B; Yang Q; Meng H; Shao C; Jiang J; Xu H; Sun K; Zhou Y; Yao Y; Zhou Z; Li H; Shen Y; Zhao Z; Tang Q; Xie J Forensic Sci Int Genet; 2020 Jul; 47():102312. PubMed ID: 32480323 [TBL] [Abstract][Full Text] [Related]
23. Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Sijen T Forensic Sci Int Genet; 2015 Sep; 18():21-32. PubMed ID: 25488609 [TBL] [Abstract][Full Text] [Related]
24. Microbiome-based body site of origin classification of forensically relevant blood traces. Díez López C; Montiel González D; Haas C; Vidaki A; Kayser M Forensic Sci Int Genet; 2020 Jul; 47():102280. PubMed ID: 32244163 [TBL] [Abstract][Full Text] [Related]
25. Assigning forensic body fluids to donors in mixed body fluids by targeted RNA/DNA deep sequencing of coding region SNPs. Ingold S; Dørum G; Hanson E; Ballantyne J; Haas C Int J Legal Med; 2020 Mar; 134(2):473-485. PubMed ID: 31989244 [TBL] [Abstract][Full Text] [Related]
26. Multivariate analysis for estimating the age of a bloodstain. Anderson SE; Hobbs GR; Bishop CP J Forensic Sci; 2011 Jan; 56(1):186-93. PubMed ID: 21198594 [TBL] [Abstract][Full Text] [Related]
27. Estimating the time since deposition (TsD) in saliva stains using temporal changes in microbial markers. Wang J; Cheng X; Zhang J; Liu Z; Cheng F; Yan J; Zhang G Forensic Sci Int Genet; 2022 Sep; 60():102747. PubMed ID: 35870433 [TBL] [Abstract][Full Text] [Related]
28. Developmental validation of the ParaDNA Blackman S; Stafford-Allen B; Hanson EK; Panasiuk M; Brooker AL; Rendell P; Ballantyne J; Wells S Forensic Sci Int Genet; 2018 Nov; 37():151-161. PubMed ID: 30176437 [TBL] [Abstract][Full Text] [Related]
29. Forensic pregnancy diagnostics with placental mRNA markers. Gauvin J; Zubakov D; van Rhee-Binkhorst J; Kloosterman A; Steegers E; Kayser M Int J Legal Med; 2010 Jan; 124(1):13-7. PubMed ID: 19148664 [TBL] [Abstract][Full Text] [Related]
30. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Sauer E; Reinke AK; Courts C Forensic Sci Int Genet; 2016 May; 22():89-99. PubMed ID: 26878708 [TBL] [Abstract][Full Text] [Related]
31. The effect of environmental conditions on the rate of RNA degradation in dried blood stains. Heneghan N; Fu J; Pritchard J; Payton M; Allen RW Forensic Sci Int Genet; 2021 Mar; 51():102456. PubMed ID: 33444974 [TBL] [Abstract][Full Text] [Related]
32. mRNA-based skin identification for forensic applications. Visser M; Zubakov D; Ballantyne KN; Kayser M Int J Legal Med; 2011 Mar; 125(2):253-63. PubMed ID: 21221983 [TBL] [Abstract][Full Text] [Related]
33. Developing a DNA methylation assay for human age prediction in blood and bloodstain. Huang Y; Yan J; Hou J; Fu X; Li L; Hou Y Forensic Sci Int Genet; 2015 Jul; 17():129-136. PubMed ID: 25979242 [TBL] [Abstract][Full Text] [Related]
34. An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensic organ tissue identification. Sauer E; Babion I; Madea B; Courts C Forensic Sci Int Genet; 2014 Nov; 13():217-23. PubMed ID: 25203915 [TBL] [Abstract][Full Text] [Related]
35. Estimating bloodstain formation time by quantitative analysis of mtDNA degradation. He H; Zhang Q; Niu Q; Li Y; Sun Q; Zhao D Forensic Sci Int; 2022 Oct; 339():111411. PubMed ID: 35963052 [TBL] [Abstract][Full Text] [Related]
36. Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Wang S; Wang Z; Tao R; Wang M; Liu J; He G; Yang Y; Xie M; Zou X; Hou Y Forensic Sci Int Genet; 2019 Sep; 42():171-180. PubMed ID: 31369993 [TBL] [Abstract][Full Text] [Related]
37. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance. de Castro TC; Taylor MC; Kieser JA; Carr DJ; Duncan W Forensic Sci Int; 2015 May; 250():98-109. PubMed ID: 25828382 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the Effects of Different Sample Collection Strategies on DNA/RNA Co-Analysis of Forensic Stains. Lacerenza D; Caudullo G; Chierto E; Aneli S; Di Vella G; Barberis M; Voyron S; Berchialla P; Robino C Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741745 [TBL] [Abstract][Full Text] [Related]
39. Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. van den Berge M; Bhoelai B; Harteveld J; Matai A; Sijen T Forensic Sci Int Genet; 2016 Jan; 20():119-129. PubMed ID: 26590860 [TBL] [Abstract][Full Text] [Related]
40. Body fluid identification and assignment to donors using a targeted mRNA massively parallel sequencing approach - results of a second EUROFORGEN / EDNAP collaborative exercise. Ingold S; Dørum G; Hanson E; Ballard D; Berti A; Gettings KB; Giangasparo F; Kampmann ML; Laurent FX; Morling N; Parson W; Steffen CR; Ulus A; van den Berge M; van der Gaag KJ; Verdoliva V; Xavier C; Ballantyne J; Haas C Forensic Sci Int Genet; 2020 Mar; 45():102208. PubMed ID: 31869731 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]