BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37598819)

  • 21. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.
    Villarino M; Melgarejo P; De Cal A
    Int J Food Microbiol; 2016 May; 224():22-7. PubMed ID: 26918325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches.
    Garcia-Benitez C; Melgarejo P; De Cal A
    Int J Food Microbiol; 2017 Jan; 241():117-122. PubMed ID: 27768931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First Report of Peach Brown Rot Caused by Monilinia fructicola in Central and Western China.
    Yin LF; Chen SN; Yuan NN; Zhai LX; Li GQ; Luo CX
    Plant Dis; 2013 Sep; 97(9):1255. PubMed ID: 30722445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scrutinising the relationship between major physiological and compositional changes during 'Merrill O'Henry' peach growth with brown rot susceptibility.
    Baró-Montel N; Giné-Bordonaba J; Torres R; Vall-Llaura N; Teixidó N; Usall J
    Food Sci Technol Int; 2021 Jun; 27(4):366-379. PubMed ID: 32960656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola.
    Zhang MM; Wang ZQ; Xu X; Huang S; Yin WX; Luo CX
    Mol Plant Pathol; 2020 Jun; 21(6):820-833. PubMed ID: 32319202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit.
    Zhao Y; Li Y; Yin J
    J Sci Food Agric; 2019 Jan; 99(2):647-655. PubMed ID: 29962027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit.
    Grzegorczyk M; Żarowska B; Restuccia C; Cirvilleri G
    Food Microbiol; 2017 Feb; 61():93-101. PubMed ID: 27697174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space.
    Di Francesco A; Ugolini L; D'Aquino S; Pagnotta E; Mari M
    Int J Food Microbiol; 2017 May; 248():32-38. PubMed ID: 28242420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifungal activity screening for mint and thyme essential oils against Rhizopus stolonifer and their application in postharvest preservation of strawberry and peach fruits.
    Yan J; Wu H; Shi F; Wang H; Chen K; Feng J; Jia W
    J Appl Microbiol; 2021 Jun; 130(6):1993-2007. PubMed ID: 33190384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola.
    Vall-Llaura N; Giné-Bordonaba J; Usall J; Larrigaudière C; Teixidó N; Torres R
    Plant Sci; 2020 Oct; 299():110599. PubMed ID: 32900437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit.
    Li G; Zhu S; Wu W; Zhang C; Peng Y; Wang Q; Shi J
    J Sci Food Agric; 2017 Jul; 97(9):3030-3038. PubMed ID: 27859285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of temperature on decay, mycelium development and sporodochia production caused by Monilinia fructicola and M. laxa on stone fruits.
    Bernat M; Segarra J; Xu XM; Casals C; Usall J
    Food Microbiol; 2017 Jun; 64():112-118. PubMed ID: 28213014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Detection of
    Ortega SF; Del Pilar Bustos López M; Nari L; Boonham N; Gullino ML; Spadaro D
    Plant Dis; 2019 Sep; 103(9):2305-2314. PubMed ID: 31306092
    [No Abstract]   [Full Text] [Related]  

  • 34. PpMYB1 and PpNPR1 interact to enhance the resistance of peach fruit to Rhizopus stolonifer infection.
    Li Y; Zuo X; Ji N; Zhang J; Wang K; Jin P; Zheng Y
    Plant Physiol Biochem; 2023 May; 198():107682. PubMed ID: 37060868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Model for Temporal Dynamics of Brown Rot Spreading in Fruit Orchards.
    Bevacqua D; Quilot-Turion B; Bolzoni L
    Phytopathology; 2018 May; 108(5):595-601. PubMed ID: 29182471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refinement of Peach Cover Spray Programs for Management of Brown Rot at Harvest.
    Lalancette N; Blaus LL; Engel P
    Plant Dis; 2020 May; 104(5):1527-1533. PubMed ID: 32105573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LAMP detection of the genetic element 'Mona' associated with DMI resistance in Monilinia fructicola.
    Chen S; Schnabel G; Yuan H; Luo C
    Pest Manag Sci; 2019 Mar; 75(3):779-786. PubMed ID: 30125043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of peach trichome removal on post-harvest brown rot and on the fruit surface microbiome.
    Shen Y; Li X; Xiong R; Ni Y; Tian S; Li B
    Int J Food Microbiol; 2023 Oct; 402():110299. PubMed ID: 37379647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits.
    Di Francesco A; Di Foggia M; Baraldi E
    Food Microbiol; 2020 May; 87():103395. PubMed ID: 31948636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using essential oils to control diseases in strawberries and peaches.
    Fontana DC; Neto DD; Pretto MM; Mariotto AB; Caron BO; Kulczynski SM; Schmidt D
    Int J Food Microbiol; 2021 Jan; 338():108980. PubMed ID: 33243629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.