These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37598950)

  • 1. The potency of hydrothermally prepared sulfated silica (SO
    Pratika RA; Wijaya K; Utami M; Mulijani S; Patah A; Alarifi S; Ram Mani R; Kumar Yadav K; Ravindran B; Chung WJ; Chang SW; Munusamy-Ramanujam G
    Chemosphere; 2023 Nov; 341():139822. PubMed ID: 37598950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pd Modification and Supporting Effects on Catalytic Dehydration of Ethanol to Ethylene and Diethyl Ether over W/TiO
    Tresatayawed A; Glinrun P; Autthanit C; Jongsomjit B
    J Oleo Sci; 2020; 69(5):503-515. PubMed ID: 32378552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts.
    Kamsuwan T; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2017; 66(2):199-207. PubMed ID: 28154350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Different Si- and Al-based Catalysts with Pd Modification and Their Use for Catalytic Dehydration of Ethanol.
    Kamsuwan T; Jongsomjit B
    J Oleo Sci; 2018; 67(8):1005-1014. PubMed ID: 30068826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.
    Angelici C; Velthoen ME; Weckhuysen BM; Bruijnincx PC
    ChemSusChem; 2014 Sep; 7(9):2505-15. PubMed ID: 25045112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a New Ternary Al
    Autthanit C; Likitpiriya N; Praserthdam P; Jongsomjit B
    ACS Omega; 2021 Aug; 6(30):19911-19923. PubMed ID: 34368578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemically prepared hierarchical MFI-type zeolites as active catalysts for catalytic ethanol dehydration.
    Kuterasiński Ł; Filek U; Gackowski M; Zimowska M; Ruggiero-Mikołajczyk M; Jodłowski PJ
    Ultrason Sonochem; 2021 Jun; 74():105581. PubMed ID: 33975188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of HCl Loading and Ethanol Concentration over HCl-Activated Clay Catalysts for Ethanol Dehydration to Ethylene.
    Krutpijit C; Jongsomjit B
    J Oleo Sci; 2017; 66(12):1355-1364. PubMed ID: 29199209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diethyl Ether Conversion to Ethene and Ethanol Catalyzed by Heteropoly Acids.
    Al-Faze R; Kozhevnikova EF; Kozhevnikov IV
    ACS Omega; 2021 Apr; 6(13):9310-9318. PubMed ID: 33842800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
    Wu C; Williams PT
    Environ Sci Technol; 2010 Aug; 44(15):5993-8. PubMed ID: 20597551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niobium on BEA Dealuminated Zeolite for High Selectivity Dehydration Reactions of Ethanol and Xylose into Diethyl Ether and Furfural.
    Valadares DS; Clemente MCH; de Freitas EF; Martins GAV; Dias JA; Dias SCL
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32610528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods.
    Autthanit C; Jongsomjit B
    J Oleo Sci; 2018 Feb; 67(2):235-243. PubMed ID: 29367488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel Production from Waste Cooking Oil via β-Zeolite-Supported Sulfated Metal Oxide Catalyst Systems.
    Yusuf BO; Oladepo SA; Ganiyu SA
    ACS Omega; 2023 Jul; 8(26):23720-23732. PubMed ID: 37426238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of TiO
    Cao G; Gao X; Song F; Wang X; Wang X; Zhang J; Han Y; Zhang Q
    Chem Commun (Camb); 2023 Dec; 59(97):14403-14406. PubMed ID: 37975177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.
    Wu C; Williams PT
    Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.
    Lilić A; Bennici S; Devaux JF; Dubois JL; Auroux A
    ChemSusChem; 2017 May; 10(9):1916-1930. PubMed ID: 28235163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SO2-4/TiO2-SiO2 Mixed Oxide Catalyst, I: Synthesis, Characterization, and Acidic Properties.
    Parida KM; Samantaray SK; Mishra HK
    J Colloid Interface Sci; 1999 Aug; 216(1):127-133. PubMed ID: 10395770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity.
    Kong PS; Pérès Y; Wan Daud WMA; Cognet P; Aroua MK
    Front Chem; 2019; 7():205. PubMed ID: 31058128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol.
    Zhang J; Zhang C; He H
    J Environ Sci (China); 2015 Sep; 35():69-75. PubMed ID: 26354694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.
    Shylesh S; Gokhale AA; Scown CD; Kim D; Ho CR; Bell AT
    ChemSusChem; 2016 Jun; 9(12):1462-72. PubMed ID: 27198471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.