These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37598955)
1. Remote estimation of phycocyanin concentration in inland waters based on optical classification. Lyu L; Song K; Wen Z; Liu G; Fang C; Shang Y; Li S; Tao H; Wang X; Li Y; Wang X Sci Total Environ; 2023 Nov; 899():166363. PubMed ID: 37598955 [TBL] [Abstract][Full Text] [Related]
2. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. Dev PJ; Sukenik A; Mishra DR; Ostrovsky I Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810 [TBL] [Abstract][Full Text] [Related]
4. An operational approach for large-scale mapping of water clarity levels in inland lakes using landsat images based on optical classification. Lu S; Bian Y; Chen F; Lin J; Lyu H; Li Y; Liu H; Zhao Y; Zheng Y; Lyu L Environ Res; 2023 Nov; 237(Pt 1):116898. PubMed ID: 37591322 [TBL] [Abstract][Full Text] [Related]
5. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320 [TBL] [Abstract][Full Text] [Related]
6. Remote estimation of cyanobacteria-dominance in inland waters. Shi K; Zhang Y; Li Y; Li L; Lv H; Liu X Water Res; 2015 Jan; 68():217-26. PubMed ID: 25462730 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542 [TBL] [Abstract][Full Text] [Related]
8. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Li L; Li L; Shi K; Li Z; Song K Sci Total Environ; 2012 Oct; 435-436():141-50. PubMed ID: 22846774 [TBL] [Abstract][Full Text] [Related]
9. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Shi K; Zhang Y; Qin B; Zhou B Sci Bull (Beijing); 2019 Oct; 64(20):1540-1556. PubMed ID: 36659563 [TBL] [Abstract][Full Text] [Related]
10. An improved algorithm for estimating the Secchi disk depth of inland waters across China based on Sentinel-2 MSI data. Qin Z; Wen Y; Jiang J; Sun Q Environ Sci Pollut Res Int; 2023 Mar; 30(14):41537-41552. PubMed ID: 36633749 [TBL] [Abstract][Full Text] [Related]
11. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
12. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes. Xue K; Boss E; Ma R; Shen M Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359 [TBL] [Abstract][Full Text] [Related]
13. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters. Karthick M; Shanmugam P; He X Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443 [TBL] [Abstract][Full Text] [Related]
14. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Cai X; Li Y; Lei S; Zeng S; Zhao Z; Lyu H; Dong X; Li J; Wang H; Xu J; Zhu Y; Wu L; Cheng X Sci Total Environ; 2023 Jan; 856(Pt 1):158869. PubMed ID: 36152846 [TBL] [Abstract][Full Text] [Related]
15. A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: A case study in Lake Hongze. Lei S; Xu J; Li Y; Li L; Lyu H; Liu G; Chen Y; Lu C; Tian C; Jiao W Environ Pollut; 2021 Feb; 270():116288. PubMed ID: 33352484 [TBL] [Abstract][Full Text] [Related]
16. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: test of a new scheme and implications for inversion algorithms. Sun D; Hu C; Qiu Z; Wang S Opt Express; 2015 Jun; 23(11):A718-40. PubMed ID: 26072895 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of trophic state for inland waters through combining Forel-Ule Index and inherent optical properties. Liu Y; Wu H; Wang S; Chen X; Kimball JS; Zhang C; Gao H; Guo P Sci Total Environ; 2022 May; 820():153316. PubMed ID: 35066030 [TBL] [Abstract][Full Text] [Related]
19. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Fang C; Song C; Wen Z; Liu G; Wang X; Li S; Shang Y; Tao H; Lyu L; Song K Environ Res; 2024 Jan; 240(Pt 1):117430. PubMed ID: 37866530 [TBL] [Abstract][Full Text] [Related]
20. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Soomets T; Uudeberg K; Jakovels D; Brauns A; Zagars M; Kutser T Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]