These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37599145)

  • 1. Saliency maps provide insights into artificial intelligence-based electrocardiography models for detecting hypertrophic cardiomyopathy.
    Siontis KC; Suárez AB; Sehrawat O; Ackerman MJ; Attia ZI; Friedman PA; Noseworthy PA; Maanja M
    J Electrocardiol; 2023; 81():286-291. PubMed ID: 37599145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram.
    Ko WY; Siontis KC; Attia ZI; Carter RE; Kapa S; Ommen SR; Demuth SJ; Ackerman MJ; Gersh BJ; Arruda-Olson AM; Geske JB; Asirvatham SJ; Lopez-Jimenez F; Nishimura RA; Friedman PA; Noseworthy PA
    J Am Coll Cardiol; 2020 Feb; 75(7):722-733. PubMed ID: 32081280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents.
    Siontis KC; Liu K; Bos JM; Attia ZI; Cohen-Shelly M; Arruda-Olson AM; Zanjirani Farahani N; Friedman PA; Noseworthy PA; Ackerman MJ
    Int J Cardiol; 2021 Oct; 340():42-47. PubMed ID: 34419527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatial QRS-T angle outperforms the Italian and Seattle ECG-based criteria for detection of hypertrophic cardiomyopathy in pediatric patients.
    Cortez D; Sharma N; Cavanaugh J; Tuozo F; Derk G; Lundberg E; Schlegel TT; Weiner K; Kiciman N; Alejos J; Landeck B; Aboulhosn J; Miyamoto S; Batra A; McCanta AC
    J Electrocardiol; 2015; 48(5):826-33. PubMed ID: 26275983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating convolutional neural network-enhanced electrocardiography for hypertrophic cardiomyopathy detection in a specialized cardiovascular setting.
    Hirota N; Suzuki S; Motogi J; Umemoto T; Nakai H; Matsuzawa W; Takayanagi T; Hyodo A; Satoh K; Arita T; Yagi N; Kishi M; Semba H; Kano H; Matsuno S; Kato Y; Otsuka T; Uejima T; Oikawa Y; Hori T; Matsuhama M; Iida M; Yajima J; Yamashita T
    Heart Vessels; 2024 Jun; 39(6):524-538. PubMed ID: 38553520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECG-derived spatial QRS-T angle is strongly associated with hypertrophic cardiomyopathy.
    Cortez D; Schlegel TT; Ackerman MJ; Bos JM
    J Electrocardiol; 2017; 50(2):195-202. PubMed ID: 27839835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network].
    Bu Y; Cha X; Zhu J; Su Y; Lai D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):285-292. PubMed ID: 35523549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward ECG-based analysis of hypertrophic cardiomyopathy: a novel ECG segmentation method for handling abnormalities.
    Nezamabadi K; Mayfield J; Li P; Greenland GV; Rodriguez S; Simsek B; Mousavi P; Shatkay H; Abraham MR
    J Am Med Inform Assoc; 2022 Oct; 29(11):1879-1889. PubMed ID: 35923089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot study analyzing automated ECG screening of hypertrophic cardiomyopathy.
    Campbell MJ; Zhou X; Han C; Abrishami H; Webster G; Miyake CY; Sower CT; Anderson JB; Knilans TK; Czosek RJ
    Heart Rhythm; 2017 Jun; 14(6):848-852. PubMed ID: 28193509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of hypertrophic cardiomyopathy is improved when using advanced rather than strictly conventional 12-lead electrocardiogram.
    Potter SL; Holmqvist F; Platonov PG; Steding K; Arheden H; Pahlm O; Starc V; McKenna WJ; Schlegel TT
    J Electrocardiol; 2010; 43(6):713-8. PubMed ID: 21040828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYBPC3 hypertrophic cardiomyopathy can be detected by using advanced ECG in children and young adults.
    Fernlund E; Liuba P; Carlson J; Platonov PG; Schlegel TT
    J Electrocardiol; 2016; 49(3):392-400. PubMed ID: 27061026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation.
    Hughes JW; Olgin JE; Avram R; Abreau SA; Sittler T; Radia K; Hsia H; Walters T; Lee B; Gonzalez JE; Tison GH
    JAMA Cardiol; 2021 Nov; 6(11):1285-1295. PubMed ID: 34347007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-Level Artificial Intelligence-Enhanced Electrocardiography in Hypertrophic Cardiomyopathy: Longitudinal Treatment and Clinical Biomarker Correlations.
    Siontis KC; Abreau S; Attia ZI; Barrios JP; Dewland TA; Agarwal P; Balasubramanyam A; Li Y; Lester SJ; Masri A; Wang A; Sehnert AJ; Edelberg JM; Abraham TP; Friedman PA; Olgin JE; Noseworthy PA; Tison GH
    JACC Adv; 2023 Oct; 2(8):. PubMed ID: 38076758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for classification of heart failure severity in patients with hypertrophic cardiomyopathy using a deep neural network algorithm with a 12-lead electrocardiogram.
    Togo S; Sugiura Y; Suzuki S; Ohno K; Akita K; Suwa K; Shibata SI; Kimura M; Maekawa Y
    Open Heart; 2023 Dec; 10(2):. PubMed ID: 38056911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice.
    Maanja M; Noseworthy PA; Geske JB; Ackerman MJ; Arruda-Olson AM; Ommen SR; Attia ZI; Friedman PA; Siontis KC
    Cardiovasc Digit Health J; 2022 Dec; 3(6):289-296. PubMed ID: 36589312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Obstructive Hypertrophic Cardiomyopathy from Nonobstructive Hypertrophic Cardiomyopathy: Development and Validation of a Model Based on Electrocardiogram Features.
    Guo L; Ma Z; Yang W; Zhang F; Shao H; Liu L; Gao C; Tao L
    Glob Heart; 2023; 18(1):40. PubMed ID: 37547171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical meaning of isolated increase of QRS voltages in hypertrophic cardiomyopathy versus athlete's heart.
    Calore C; Zorzi A; Corrado D
    J Electrocardiol; 2015; 48(3):373-9. PubMed ID: 25595718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating hypertrophic cardiomyopathy from athlete's heart: An electrocardiographic and echocardiographic approach.
    Grazioli G; Usín D; Trucco E; Sanz M; Montserrat S; Vidal B; Gutierrez J; Canal R; Brugada J; Mont L; Sitges M
    J Electrocardiol; 2016; 49(4):539-44. PubMed ID: 27016258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of ECG findings to phenotypic expression in patients with hypertrophic cardiomyopathy: a cardiac magnetic resonance study.
    Delcrè SD; Di Donna P; Leuzzi S; Miceli S; Bisi M; Scaglione M; Caponi D; Conte MR; Cecchi F; Olivotto I; Gaita F
    Int J Cardiol; 2013 Aug; 167(3):1038-45. PubMed ID: 22464482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead-Specific Performance for Atrial Fibrillation Detection in Convolutional Neural Network Models Using Sinus Rhythm Electrocardiography.
    Suzuki S; Motogi J; Umemoto T; Hirota N; Nakai H; Matsuzawa W; Takayanagi T; Hyodo A; Satoh K; Arita T; Yagi N; Kishi M; Semba H; Kano H; Matsuno S; Kato Y; Otsuka T; Hori T; Matsuhama M; Iida M; Uejima T; Oikawa Y; Yajima J; Yamashita T
    Circ Rep; 2024 Mar; 6(3):46-54. PubMed ID: 38464990
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.