These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

926 related articles for article (PubMed ID: 37599147)

  • 1. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.
    Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA
    Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically Interpretable Machine Learning Models for Early Prediction of Mortality in Older Patients with Multiple Organ Dysfunction Syndrome: An International Multicenter Retrospective Study.
    Liu X; DuMontier C; Hu P; Liu C; Yeung W; Mao Z; Ho V; Thoral PJ; Kuo PC; Hu J; Li D; Cao D; Mark RG; Zhou F; Zhang Z; Celi LA
    J Gerontol A Biol Sci Med Sci; 2023 Mar; 78(4):718-726. PubMed ID: 35657011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation.
    Lim L; Gim U; Cho K; Yoo D; Ryu HG; Lee HC
    Crit Care; 2024 Mar; 28(1):76. PubMed ID: 38486247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning.
    Hu Y; Lui A; Goldstein M; Sudarshan M; Tinsay A; Tsui C; Maidman SD; Medamana J; Jethani N; Puli A; Nguy V; Aphinyanaphongs Y; Kiefer N; Smilowitz NR; Horowitz J; Ahuja T; Fishman GI; Hochman J; Katz S; Bernard S; Ranganath R
    Eur Heart J Acute Cardiovasc Care; 2024 Jun; 13(6):472-480. PubMed ID: 38518758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for the prediction of all-cause mortality in patients with sepsis-associated acute kidney injury during hospitalization.
    Zhou H; Liu L; Zhao Q; Jin X; Peng Z; Wang W; Huang L; Xie Y; Xu H; Tao L; Xiao X; Nie W; Liu F; Li L; Yuan Q
    Front Immunol; 2023; 14():1140755. PubMed ID: 37077912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques.
    Lei M; Han Z; Wang S; Guo C; Zhang X; Song Y; Lin F; Huang T
    Front Immunol; 2022; 13():979877. PubMed ID: 36325351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study.
    Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ
    Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning.
    Liu W; Ma W; Bai N; Li C; Liu K; Yang J; Zhang S; Zhu K; Zhou Q; Liu H; Guo J; Li L
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 35993194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
    Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning-Based Algorithm for the Prediction of Intensive Care Unit Delirium (PRIDE): Retrospective Study.
    Hur S; Ko RE; Yoo J; Ha J; Cha WC; Chung CR
    JMIR Med Inform; 2021 Jul; 9(7):e23401. PubMed ID: 34309567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia.
    Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL
    Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.