These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37599264)

  • 1. Exploiting the Use of the Decarboxylative S-Alkylation Reaction to Produce Self-Blowing, Recyclable Polycarbonate Foams.
    Abbasoglu T; Ciardi D; Tournilhac F; Irusta L; Sardon H
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202308339. PubMed ID: 37599264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemo- and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Self-Blowing Non-Isocyanate Polyurethane Foams.
    Monie F; Grignard B; Thomassin JM; Mereau R; Tassaing T; Jerome C; Detrembleur C
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17033-17041. PubMed ID: 32521118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress of Non-Isocyanate Polyurethane Foam and Their Challenges.
    El Khezraji S; Ben Youcef H; Belachemi L; Lopez Manchado MA; Verdejo R; Lahcini M
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade (Dithio)carbonate Ring Opening Reactions for Self-Blowing Polyhydroxythiourethane Foams.
    Coste G; Negrell C; Caillol S
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100833. PubMed ID: 35065540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams.
    Monie F; Grignard B; Detrembleur C
    ACS Macro Lett; 2022 Feb; 11(2):236-242. PubMed ID: 35574775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascade Exotherms for Rapidly Producing Hybrid Nonisocyanate Polyurethane Foams from Room Temperature Formulations.
    Bourguignon M; Grignard B; Detrembleur C
    J Am Chem Soc; 2024 Jan; 146(1):988-1000. PubMed ID: 38157412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams.
    Bourguignon M; Grignard B; Detrembleur C
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213422. PubMed ID: 36278827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safer Polyurethane Foams with Cyclic Carbonates.
    Easley AD; Mangano A; Fors BP
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202218062. PubMed ID: 36637901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Morphology and Physio-Chemical Properties of Stimulus-Responsive Polyurethane Foams by Altering Chemical Blowing Agent Content.
    Hasan SM; Touchet T; Jayadeep A; Maitland DJ
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Evaluation of Glucose Based Non-Isocyanate Polyurethane Self-Blowing Rigid Foams.
    Xi X; Pizzi A; Gerardin C; Lei H; Chen X; Amirou S
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31684084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Study of Crystallization Behavior, Microcellular Structure and Thermal Properties of Glass-Fiber/Polycarbonate Composites.
    Wang X; Sun Y; Hu J; Wu L; Geng T; Guo Y; Zhao C; Dong B; Liu C
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Characterization of Condensed Tannin Non-Isocyanate Polyurethane (NIPU) Rigid Foams by Ambient Temperature Blowing.
    Chen X; Xi X; Pizzi A; Fredon E; Zhou X; Li J; Gerardin C; Du G
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32235495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO
    Wu C; Zhang T; Liang J; Yin J; Xiao M; Han D; Huang S; Wang S; Meng Y
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory polymer foams with tunable interconnectivity using off-the-shelf foaming components.
    Petryk NM; Haas G; Vakil AU; Monroe MBB
    J Biomed Mater Res A; 2022 Aug; 110(8):1422-1434. PubMed ID: 35319810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Low-Density Silicone Foams Blown by Water-Hydroxyl Blends.
    Rebane I; Levin KJ; Mäeorg U; Johanson U; Piirimägi P; Tätte T; Tamm T
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance plant-derived thermoplastic polyester elastomer foams achieved by manipulating charging order of mixed blowing agents.
    Xu Z; Wang G; Wang Z; Zhang A; Zhao G
    Int J Biol Macromol; 2023 Dec; 252():126261. PubMed ID: 37591438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview: Polycarbonates via Ring-Opening Polymerization, Differences between Six- and Five-Membered Cyclic Carbonates: Inspiration for Green Alternatives.
    Abdel Baki Z; Dib H; Sahin T
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Biobased Degradable Vitrimer Foams: Mechanical Robust, Catalyst-Free Self-Healing, and Shape Memory Properties.
    Tian Y; Feng X; Wang C; Shang S; Liu H; Huang X; Jiang J; Song Z; Zhang H
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6523-6532. PubMed ID: 38275160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ether imide)/Epoxy Foam Composites with a Microcellular Structure and Ultralow Density: Bead Foam Fabrication, Compression Molding, Mechanical Properties, Thermal Stability, and Flame-Retardant Properties.
    Jiang J; Feng W; Zhao D; Zhai W
    ACS Omega; 2020 Oct; 5(40):25784-25797. PubMed ID: 33073103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foamability of Cellulose Palmitate Using Various Physical Blowing Agents in the Extrusion Process.
    Rokkonen T; Willberg-Keyriläinen P; Ropponen J; Malm T
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.