These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37599649)

  • 1. Spontaneous motion of a passive fluid droplet in an active microchannel.
    Tiribocchi A; Durve M; Lauricella M; Montessori A; Succi S
    Soft Matter; 2023 Aug; 19(34):6556-6568. PubMed ID: 37599649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous motility of passive emulsion droplets in polar active gels.
    De Magistris G; Tiribocchi A; Whitfield CA; Hawkins RJ; Cates ME; Marenduzzo D
    Soft Matter; 2014 Oct; 10(39):7826-37. PubMed ID: 25156695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anchoring-driven spontaneous rotations in active gel droplets.
    Fialho AR; Blow ML; Marenduzzo D
    Soft Matter; 2017 Sep; 13(35):5933-5941. PubMed ID: 28770268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.
    Marenduzzo D; Orlandini E; Cates ME; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031921. PubMed ID: 17930285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active polar fluid flow in finite droplets.
    Whitfield CA; Marenduzzo D; Voituriez R; Hawkins RJ
    Eur Phys J E Soft Matter; 2014 Feb; 37(2):8. PubMed ID: 24532222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow.
    Karan P; Chakraborty J; Chakraborty S; Wereley ST; Christov IC
    Phys Rev E; 2021 Jul; 104(1-2):015108. PubMed ID: 34412219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern formation and collective effects during the process of the motion of magnetic nanomotors in narrow channels.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Golubkov A; Kiverin A; Nastulyavichus A; Kudryashov S
    Phys Chem Chem Phys; 2023 Apr; 25(16):11780-11788. PubMed ID: 37067343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous motion in hierarchically assembled active matter.
    Sanchez T; Chen DT; DeCamp SJ; Heymann M; Dogic Z
    Nature; 2012 Nov; 491(7424):431-4. PubMed ID: 23135402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersed Boundary Simulations of Active Fluid Droplets.
    Whitfield CA; Hawkins RJ
    PLoS One; 2016; 11(9):e0162474. PubMed ID: 27606609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow.
    Howard MP; Truskett TM; Nikoubashman A
    Soft Matter; 2019 Apr; 15(15):3168-3178. PubMed ID: 30883631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulated Cell Dynamics in Droplet Microfluidic Devices with Sheath Flow.
    Beshay PE; Ibrahim AM; Jeffrey SS; Howe RT; Anis YH
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
    Gracka M; Lima R; Miranda JM; Student S; Melka B; Ostrowski Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107117. PubMed ID: 36122496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive and active droplet generation with microfluidics: a review.
    Zhu P; Wang L
    Lab Chip; 2016 Dec; 17(1):34-75. PubMed ID: 27841886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.
    Bonelli F; Gonnella G; Tiribocchi A; Marenduzzo D
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):1. PubMed ID: 26769011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.
    Wang A; Song Q; Ji B; Yao Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063031. PubMed ID: 26764827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Chemical Pumps and Motors To Design Flows for Directed Particle Assembly.
    Shklyaev OE; Shum H; Balazs AC
    Acc Chem Res; 2018 Nov; 51(11):2672-2680. PubMed ID: 30346725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinking and depletion determine spatial instabilities in cytoskeletal active matter.
    Sarfati G; Maitra A; Voituriez R; Galas JC; Estevez-Torres A
    Soft Matter; 2022 May; 18(19):3793-3800. PubMed ID: 35521993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann study of chemically-driven self-propelled droplets.
    Fadda F; Gonnella G; Lamura A; Tiribocchi A
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.