These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 3759974)
1. Uptake and metabolism of lactosylceramide on low density lipoproteins in cultured proximal tubular cells from normal and familial hypercholesterolemic homozygotes. Chatterjee S; Clarke KS; Kwiterovich PO J Biol Chem; 1986 Oct; 261(29):13480-6. PubMed ID: 3759974 [TBL] [Abstract][Full Text] [Related]
2. Regulation of synthesis of lactosylceramide and long chain bases in normal and familial hypercholesterolemic cultured proximal tubular cells. Chatterjee S; Clarke KS; Kwiterovich PO J Biol Chem; 1986 Oct; 261(29):13474-9. PubMed ID: 3759973 [TBL] [Abstract][Full Text] [Related]
3. Regulation of synthesis of lactosylceramide in normal and tumor proximal tubular cells. Chatterjee S Biochim Biophys Acta; 1993 Apr; 1167(3):339-44. PubMed ID: 8481397 [TBL] [Abstract][Full Text] [Related]
4. Effects of monensin on glycosphingolipid metabolism in cultured human proximal tubular cells. Chatterjee S Indian J Biochem Biophys; 1993 Dec; 30(6):346-52. PubMed ID: 8005617 [TBL] [Abstract][Full Text] [Related]
5. Localization of urinary lactosylceramide in cytoplasmic vesicles of renal tubular cells in homozygous familial hypercholesterolemia. Chatterjee S; Kwiterovich PO; Gupta P; Erozan YS; Alving CR; Richards RL Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1313-7. PubMed ID: 6131418 [TBL] [Abstract][Full Text] [Related]
6. Glycosphingolipids and plasma lipoproteins: a review. Chatterjee S; Kwiterovich PO Can J Biochem Cell Biol; 1984 Jun; 62(6):385-97. PubMed ID: 6088014 [TBL] [Abstract][Full Text] [Related]
7. Regulation of glycosphingolipid glycosyltransferase by low density lipoprotein receptors in cultured human proximal tubular cells. Chatterjee S; Ghosh N; Castiglione E; Kwiterovich PO J Biol Chem; 1988 Sep; 263(26):13017-22. PubMed ID: 2458339 [TBL] [Abstract][Full Text] [Related]
8. UDPgalactose:glucosylceramide beta 1----4-galactosyltransferase activity in human proximal tubular cells from normal and familial hypercholesterolemic homozygotes. Chatterjee S; Castiglione E Biochim Biophys Acta; 1987 Jan; 923(1):136-42. PubMed ID: 3099851 [TBL] [Abstract][Full Text] [Related]
9. Separation of human urinary proximal tubular cells from familial hypercholesterolemic homozygotes by Ficoll gradient centrifugation. Morphological and biochemical characteristics. Chatterjee S; Gupta P; Kwiterovich PO Virchows Arch B Cell Pathol Incl Mol Pathol; 1984; 45(4):365-76. PubMed ID: 6145247 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of low-density lipoproteins by cultured hepatocytes from normal and homozygous familial hypercholesterolemic subjects. Hoeg JM; Edge SB; Demosky SJ; Starzl TE; Triche T; Gregg RE; Brewer HB Biochim Biophys Acta; 1986 May; 876(3):646-57. PubMed ID: 3707989 [TBL] [Abstract][Full Text] [Related]
11. Increased urinary excretion of glycosphingolipids in familial hypercholesterolemia. Chatterjee S; Sekerke CS; Kwiterovich PO J Lipid Res; 1982 May; 23(4):513-22. PubMed ID: 6808069 [TBL] [Abstract][Full Text] [Related]
12. Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. Bilheimer DW; Stone NJ; Grundy SM J Clin Invest; 1979 Aug; 64(2):524-33. PubMed ID: 222811 [TBL] [Abstract][Full Text] [Related]
13. Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia. Bihain BE; Yen FT Biochemistry; 1992 May; 31(19):4628-36. PubMed ID: 1581314 [TBL] [Abstract][Full Text] [Related]
14. Sphingolipids in atherosclerosis and vascular biology. Chatterjee S Arterioscler Thromb Vasc Biol; 1998 Oct; 18(10):1523-33. PubMed ID: 9763522 [TBL] [Abstract][Full Text] [Related]
15. Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia. Napoli C; Postiglione A; Triggiani M; Corso G; Palumbo G; Carbone V; Ruocco A; Ambrosio G; Montefusco S; Malorni A; Condorelli M; Chiariello M Atherosclerosis; 1995 Dec; 118(2):259-73. PubMed ID: 8770320 [TBL] [Abstract][Full Text] [Related]
16. The metabolic basis of familial hypercholesterolemia. Myant NB Klin Wochenschr; 1983 Apr; 61(8):383-401. PubMed ID: 6306334 [TBL] [Abstract][Full Text] [Related]
17. Low density lipoprotein kinetics in a family having defective low density lipoprotein receptors in which hypercholesterolemia is suppressed. Vega GL; Hobbs HH; Grundy SM Arterioscler Thromb; 1991; 11(3):578-85. PubMed ID: 2029498 [TBL] [Abstract][Full Text] [Related]
18. Structure, immunology, and cell reactivity of low density lipoprotein from umbilical vein of a newborn type II homozygote. Patsch W; Witztum JL; Ostlund R; Schonfeld G J Clin Invest; 1980 Jul; 66(1):123-9. PubMed ID: 7400306 [TBL] [Abstract][Full Text] [Related]
19. Low density lipoprotein receptor activity in homozygous familial hypercholesterolemia fibroblasts. Semenkovich CF; Ostlund RE; Levy RA; Osa SR J Biol Chem; 1982 Nov; 257(21):12857-65. PubMed ID: 6290485 [TBL] [Abstract][Full Text] [Related]
20. Effects of ML-236b (compactin) on sterol synthesis and low density lipoprotein receptor activities in fibroblasts of patients with homozygous familial hypercholesterolemia. Haba T; Mabuchi H; Yoshimura A; Watanabe A; Wakasugi T; Tatami R; Ueda K; Ueda R; Kametani T; Koizumi J; Miyamoto S; Takeda R; Takeshita H J Clin Invest; 1981 May; 67(5):1532-40. PubMed ID: 7229037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]