BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37599787)

  • 1. Activator Protein-1 (AP-1) Signaling Inhibits the Growth of Ewing Sarcoma Cells in Response to DNA Replication Stress.
    Croushore EE; Koppenhafer SL; Goss KL; Geary EL; Gordon DJ
    Cancer Res Commun; 2023 Aug; 3(8):1580-1593. PubMed ID: 37599787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma.
    Goss KL; Gordon DJ
    Oncotarget; 2016 Sep; 7(39):63003-63019. PubMed ID: 27557498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2.
    Koppenhafer SL; Goss KL; Terry WW; Gordon DJ
    Mol Cancer Res; 2020 Jan; 18(1):91-104. PubMed ID: 31649026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translational repressor 4E-BP1 regulates RRM2 levels and functions as a tumor suppressor in Ewing sarcoma tumors.
    Goss KL; Koppenhafer SL; Waters T; Terry WW; Wen KK; Wu M; Ostergaard J; Gordon PM; Gordon DJ
    Oncogene; 2021 Jan; 40(3):564-577. PubMed ID: 33191406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine.
    Goss KL; Koppenhafer SL; Harmoney KM; Terry WW; Gordon DJ
    Oncotarget; 2017 Oct; 8(50):87016-87032. PubMed ID: 29152060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mTORC1/2 and Protein Translation Regulate Levels of CHK1 and the Sensitivity to CHK1 Inhibitors in Ewing Sarcoma Cells.
    Koppenhafer SL; Goss KL; Terry WW; Gordon DJ
    Mol Cancer Ther; 2018 Dec; 17(12):2676-2688. PubMed ID: 30282812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eltrombopag inhibits the proliferation of Ewing sarcoma cells via iron chelation and impaired DNA replication.
    Waters T; Goss KL; Koppenhafer SL; Terry WW; Gordon DJ
    BMC Cancer; 2020 Nov; 20(1):1171. PubMed ID: 33256675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer.
    Tian L; Chen C; Guo Y; Zhang F; Mi J; Feng Q; Lin S; Xi N; Tian J; Yu L; Chen Y; Cao M; Lai C; Fan J; Zhang Y; Chen G
    Neoplasia; 2021 Jul; 23(7):643-652. PubMed ID: 34126361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition.
    Shu Z; Li Z; Huang H; Chen Y; Fan J; Yu L; Wu Z; Tian L; Qi Q; Peng S; Wei C; Xie Z; Li X; Feng Q; Sheng H; Li G; Wei D; Shan C; Chen G
    Oncogene; 2020 Aug; 39(35):5721-5733. PubMed ID: 32712628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2).
    Chen CW; Li Y; Hu S; Zhou W; Meng Y; Li Z; Zhang Y; Sun J; Bo Z; DePamphilis ML; Yen Y; Han Z; Zhu W
    Oncogene; 2019 Mar; 38(13):2364-2379. PubMed ID: 30518875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel assay revealed that ribonucleotide reductase is functionally important for interstrand DNA crosslink repair.
    Fujii N; Evison BJ; Actis ML; Inoue A
    Bioorg Med Chem; 2015 Nov; 23(21):6912-21. PubMed ID: 26462050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance.
    Zhou B; Su L; Hu S; Hu W; Yip ML; Wu J; Gaur S; Smith DL; Yuan YC; Synold TW; Horne D; Yen Y
    Cancer Res; 2013 Nov; 73(21):6484-93. PubMed ID: 24072748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction.
    Rieunier G; Wu X; Harris LE; Mills JV; Nandakumar A; Colling L; Seraia E; Hatch SB; Ebner DV; Folkes LK; Weyer-Czernilofsky U; Bogenrieder T; Ryan AJ; Macaulay VM
    Cancer Res; 2021 Apr; 81(8):2128-2141. PubMed ID: 33509941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma.
    Tang SW; Bilke S; Cao L; Murai J; Sousa FG; Yamade M; Rajapakse V; Varma S; Helman LJ; Khan J; Meltzer PS; Pommier Y
    Clin Cancer Res; 2015 Sep; 21(18):4184-93. PubMed ID: 25779942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans.
    Jung KW; Kwon S; Jung JH; Bahn YS
    Microbiol Spectr; 2022 Aug; 10(4):e0104422. PubMed ID: 35736239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synergistic interaction of gemcitabine and cytosine arabinoside with the ribonucleotide reductase inhibitor triapine is schedule dependent.
    Sigmond J; Kamphuis JA; Laan AC; Hoebe EK; Bergman AM; Peters GJ
    Biochem Pharmacol; 2007 May; 73(10):1548-57. PubMed ID: 17324380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(-/-) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors.
    Lin ZP; Belcourt MF; Cory JG; Sartorelli AC
    J Biol Chem; 2004 Jun; 279(26):27030-8. PubMed ID: 15096505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication.
    Foskolou IP; Jorgensen C; Leszczynska KB; Olcina MM; Tarhonskaya H; Haisma B; D'Angiolella V; Myers WK; Domene C; Flashman E; Hammond EM
    Mol Cell; 2017 Apr; 66(2):206-220.e9. PubMed ID: 28416140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The identification of novel 5'-amino gemcitabine analogs as potent RRM1 inhibitors.
    Labroli MA; Dwyer MP; Shen R; Popovici-Muller J; Pu Q; Wyss D; McCoy M; Barrett D; Davis N; Seghezzi W; Shanahan F; Taricani L; Beaumont M; Malinao MC; Parry D; Guzi TJ
    Bioorg Med Chem; 2014 Apr; 22(7):2303-10. PubMed ID: 24588962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth.
    Subramanian D; Bunjobpol W; Sabapathy K
    J Biol Chem; 2015 Jul; 290(30):18636-49. PubMed ID: 26018080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.