BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 3759979)

  • 41. Photoreduction of protochlorophyllide and its relationship to delta-aminolaevulinic acid synthesis in the leaves of dark-grown barley (Hordeum vulgare) seedlings.
    Stobart AK; Ameen-Bukhari I
    Biochem J; 1986 Jun; 236(3):741-8. PubMed ID: 3790090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of light on four protochlorophyllide-binding polypeptides of barley (Hordeum vulgare).
    Redlinger TE; Apel K
    Arch Biochem Biophys; 1980 Mar; 200(1):253-60. PubMed ID: 7362255
    [No Abstract]   [Full Text] [Related]  

  • 43. The association of protein synthesis with protochlorophyllide holochrome regeneration in dark-grown barley leaves.
    Alscher RG; Hawkes SP; Sauer K
    Biochem Biophys Res Commun; 1976 Nov; 73(2):240-7. PubMed ID: 999709
    [No Abstract]   [Full Text] [Related]  

  • 44. Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts.
    Rebeiz CA; Mattheis JR; Smith BB; Rebeiz CC; Dayton DF
    Arch Biochem Biophys; 1975 Dec; 171(2):549-67. PubMed ID: 1200640
    [No Abstract]   [Full Text] [Related]  

  • 45. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts.
    Fufsler TP; Castelfranco PA; Wong YS
    Plant Physiol; 1984 Apr; 74(4):928-33. PubMed ID: 16663535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of illumination of whole barley plants on the protochlorophyllide-activating system in the isolated plastids.
    Mapleston RE; Griffiths WT
    Biochem Soc Trans; 1977; 5(1):319-21. PubMed ID: 892198
    [No Abstract]   [Full Text] [Related]  

  • 47. A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway.
    Gough SP; Rzeznicka K; Peterson Wulff R; Francisco Jda C; Hansson A; Jensen PE; Hansson M
    Plant Physiol Biochem; 2007 Dec; 45(12):932-6. PubMed ID: 17949988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring.
    Walker CJ; Mansfield KE; Smith KM; Castelfranco PA
    Biochem J; 1989 Jan; 257(2):599-602. PubMed ID: 2930469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry.
    Wu SM; Mayasich JM; Rebeiz CA
    Anal Biochem; 1989 May; 178(2):294-300. PubMed ID: 2751091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-protoporphyrin, and protochlorophyllide.
    Hukmani P; Tripathy BC
    Anal Biochem; 1992 Oct; 206(1):125-30. PubMed ID: 1456423
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amitrole treatment of etiolated barley seedlings leads to deregulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes.
    La Rocca N; Rascio N; Oster U; Rüdiger W
    Planta; 2001 May; 213(1):101-8. PubMed ID: 11523645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eliminating interference by anthocyanins when determining the porphyrin ratio of red plant leaves.
    Lee TC; Shih TH; Huang MY; Lin KH; Huang WD; Yang CM
    J Photochem Photobiol B; 2018 Oct; 187():106-112. PubMed ID: 30121420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls.
    Nakanishi H; Nozue H; Suzuki K; Kaneko Y; Taguchi G; Hayashida N
    Plant Cell Physiol; 2005 Mar; 46(3):467-73. PubMed ID: 15695432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS.
    Chereskin BM; Castelfranco PA
    Plant Physiol; 1982 Jan; 69(1):112-6. PubMed ID: 16662140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803.
    Ito H; Yokono M; Tanaka R; Tanaka A
    J Biol Chem; 2008 Apr; 283(14):9002-11. PubMed ID: 18230620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus.
    Kropat J; Oster U; Rüdiger W; Beck CF
    Plant J; 2000 Nov; 24(4):523-31. PubMed ID: 11115133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monovinyl and divinyl protochlorophyllide pools in etiolated tissues of higher plants.
    Shioi Y; Takamiya K
    Plant Physiol; 1992 Nov; 100(3):1291-5. PubMed ID: 16653119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protochlorophyll biosynthesis in a cell-free system from higher plants.
    Rebeiz CA; Castelfranco PA
    Plant Physiol; 1971 Jan; 47(1):24-32. PubMed ID: 5543781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of chlorophylls from protoporphyrin IX.
    Willows RD
    Nat Prod Rep; 2003 Jun; 20(3):327-41. PubMed ID: 12828371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves.
    Richter A; Peter E; Pörs Y; Lorenzen S; Grimm B; Czarnecki O
    Plant Cell Physiol; 2010 May; 51(5):670-81. PubMed ID: 20375109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.