BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37600142)

  • 1. Continuous shared control of a mobile robot with brain-computer interface and autonomous navigation for daily assistance.
    Xu B; Liu D; Xue M; Miao M; Hu C; Song A
    Comput Struct Biotechnol J; 2023; 22():3-16. PubMed ID: 37600142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CVT-Based Asynchronous BCI for Brain-Controlled Robot Navigation.
    Li M; Wei R; Zhang Z; Zhang P; Xu G; Liao W
    Cyborg Bionic Syst; 2023; 4():0024. PubMed ID: 37223547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 5. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A telepresence mobile robot controlled with a noninvasive brain-computer interface.
    Escolano C; Antelis JM; Minguez J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):793-804. PubMed ID: 22180512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots.
    Galán F; Nuttin M; Lew E; Ferrez PW; Vanacker G; Philips J; Millán Jdel R
    Clin Neurophysiol; 2008 Sep; 119(9):2159-69. PubMed ID: 18621580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation.
    Deng X; Liang Yu Z; Lin C; Gu Z; Li Y
    J Neural Eng; 2020 Jul; 17(4):045005. PubMed ID: 32413885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments.
    Wang C; Wang J; Li C; Ho D; Cheng J; Yan T; Meng L; Meng MQ
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.