These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37600190)

  • 1. Leaf resistance to
    You Y; Astudillo-Estévez I; Essenstam B; Qin S; van Kan JAL
    Front Plant Sci; 2023; 14():1156804. PubMed ID: 37600190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea.
    Finkers R; van Heusden AW; Meijer-Dekens F; van Kan JA; Maris P; Lindhout P
    Theor Appl Genet; 2007 Apr; 114(6):1071-80. PubMed ID: 17273845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three QTLs for Botrytis cinerea resistance in tomato.
    Finkers R; van den Berg P; van Berloo R; ten Have A; van Heusden AW; van Kan JA; Lindhout P
    Theor Appl Genet; 2007 Feb; 114(4):585-93. PubMed ID: 17136515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the molecular basis of resistance to
    Thakur R; Sharma S; Devi R; Sirari A; Tiwari RK; Lal MK; Kumar R
    PeerJ; 2023; 11():e15560. PubMed ID: 37361041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapours from plant essential oils to manage tomato grey mould caused by Botrytiscinerea.
    Hong JK; Sook Jo Y; Jeong DH; Woo SM; Park JY; Yoon DJ; Lee YH; Choi SH; Park CJ
    Fungal Biol; 2023 Apr; 127(4):985-996. PubMed ID: 37024158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity.
    Jo YS; Park HB; Kim JY; Choi SM; Lee DS; Kim DH; Lee YH; Park CJ; Jeun YC; Hong JK
    Plant Pathol J; 2020 Aug; 36(4):335-345. PubMed ID: 32788892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol Potential of Trichoderma afroharzianum TM24 Against Grey Mould on Tomato Plants.
    Zhao J; Liu T; Zhang D; Wu H; Zhang T; Dong D
    Curr Microbiol; 2021 Dec; 78(12):4115-4126. PubMed ID: 34668992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems.
    Lacrampe N; Colombié S; Dumont D; Nicot P; Lecompte F; Lugan R
    Planta; 2023 Jan; 257(2):41. PubMed ID: 36680621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester.
    Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C
    Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Lisianthus Cultivars for Resistance to Botrytis cinerea.
    Wegulo SN; Vilchez M
    Plant Dis; 2007 Aug; 91(8):997-1001. PubMed ID: 30780434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Leaf Blight Caused by
    Huang Y; Jones C; Urbina H; Zhang S
    Plant Dis; 2023 Aug; ():. PubMed ID: 37606957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato.
    Davis J; Yu D; Evans W; Gokirmak T; Chetelat RT; Stotz HU
    Theor Appl Genet; 2009 Jul; 119(2):305-14. PubMed ID: 19399472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea.
    Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q
    Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse.
    Decognet V; Bardin M; Trottin-Caudal Y; Nicot PC
    Phytopathology; 2009 Feb; 99(2):185-93. PubMed ID: 19159311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.