BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37601315)

  • 1. GOgetter: A pipeline for summarizing and visualizing GO slim annotations for plant genetic data.
    Sessa EB; Masalia RR; Arrigo N; Barker MS; Pelosi JA
    Appl Plant Sci; 2023; 11(4):e11536. PubMed ID: 37601315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction to GOgetter: A pipeline for summarizing and visualizing GO slim annotations for plant genetic data.
    Appl Plant Sci; 2023; 11(5):e11544. PubMed ID: 37915434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL.
    Mutowo P; Bento AP; Dedman N; Gaulton A; Hersey A; Lomax J; Overington JP
    J Biomed Semantics; 2016 Sep; 7(1):59. PubMed ID: 27678076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts.
    Hinderer EW; Moseley HNB
    PLoS One; 2020; 15(6):e0233311. PubMed ID: 32525872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing GO Annotations.
    Supek F; Škunca N
    Methods Mol Biol; 2017; 1446():207-220. PubMed ID: 27812945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictability of gene ontology slim-terms from primary structure information in Embryophyta plant proteins.
    Jaramillo-Garzón JA; Gallardo-Chacón JJ; Castellanos-Domínguez CG; Perera-Lluna A
    BMC Bioinformatics; 2013 Feb; 14():68. PubMed ID: 23441934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic, context-specific generation of Gene Ontology slims.
    Davis MJ; Sehgal MS; Ragan MA
    BMC Bioinformatics; 2010 Oct; 11():498. PubMed ID: 20929524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.
    Park J; Costanzo MC; Balakrishnan R; Cherry JM; Hong EL
    Database (Oxford); 2012; 2012():bas001. PubMed ID: 22434836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DynGO: a tool for visualizing and mining of Gene Ontology and its associations.
    Liu H; Hu ZZ; Wu CH
    BMC Bioinformatics; 2005 Aug; 6():201. PubMed ID: 16091147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of BioCreAtIvE assessment of task 2.
    Blaschke C; Leon EA; Krallinger M; Valencia A
    BMC Bioinformatics; 2005; 6 Suppl 1(Suppl 1):S16. PubMed ID: 15960828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for increasing expressivity of Gene Ontology annotations using a compositional approach.
    Huntley RP; Harris MA; Alam-Faruque Y; Blake JA; Carbon S; Dietze H; Dimmer EC; Foulger RE; Hill DP; Khodiyar VK; Lock A; Lomax J; Lovering RC; Mutowo-Meullenet P; Sawford T; Van Auken K; Wood V; Mungall CJ
    BMC Bioinformatics; 2014 May; 15():155. PubMed ID: 24885854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GOMCL: a toolkit to cluster, evaluate, and extract non-redundant associations of Gene Ontology-based functions.
    Wang G; Oh DH; Dassanayake M
    BMC Bioinformatics; 2020 Apr; 21(1):139. PubMed ID: 32272889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology.
    Camon E; Magrane M; Barrell D; Lee V; Dimmer E; Maslen J; Binns D; Harte N; Lopez R; Apweiler R
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D262-6. PubMed ID: 14681408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines.
    Mazandu GK; Mulder NJ
    Front Genet; 2014; 5():264. PubMed ID: 25147557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene function annotations for the maize NAM founder lines.
    Fattel L; Yanarella CF; Ngara B; Johnson OT; Campbell DA; Wimalanathan K; Lawrence-Dill CJ
    BMC Res Notes; 2024 Jan; 17(1):9. PubMed ID: 38167110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to learn about gene function: text-mining or ontologies?
    Soldatos TG; Perdigão N; Brown NP; Sabir KS; O'Donoghue SI
    Methods; 2015 Mar; 74():3-15. PubMed ID: 25088781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A relation based measure of semantic similarity for Gene Ontology annotations.
    Sheehan B; Quigley A; Gaudin B; Dobson S
    BMC Bioinformatics; 2008 Nov; 9():468. PubMed ID: 18983678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.
    Manda P; McCarthy F; Bridges SM
    J Biomed Inform; 2013 Oct; 46(5):849-56. PubMed ID: 23850840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology.
    Botton A; Galla G; Conesa A; Bachem C; Ramina A; Barcaccia G
    BMC Genomics; 2008 Jul; 9():347. PubMed ID: 18652646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.