BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37601367)

  • 1. Bioenergetics of aerobic and anaerobic growth of
    Wray AC; Gorman-Lewis D
    Front Microbiol; 2023; 14():1234598. PubMed ID: 37601367
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32.
    Zuo H; Kukkadapu R; Zhu Z; Ni S; Huang L; Zeng Q; Liu C; Dong H
    Sci Total Environ; 2020 Nov; 741():140213. PubMed ID: 32603937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycaprolactone-Modified Biochar Supported Nanoscale Zero-Valent Iron Coupling with
    Ye J; Mao Y; Meng L; Li J; Li X; Xiao L; Zhang Y; Wang F; Deng H
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics.
    Zhang B; Jiao W
    Environ Res; 2022 Nov; 214(Pt 4):113971. PubMed ID: 35952752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential degradation of petroleum hydrocarbons by
    Li Y; Liu Y; Guo D; Dong H
    Front Microbiol; 2024; 15():1389954. PubMed ID: 38659987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR).
    Liu C; Yang J; Liu L; Li B; Yuan H; Liu W
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28500045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-Assisted Formation of Soluble Mn(III) and Bixbyite-like Mn
    Min D; Cheng L; Liu JQ; Liu DF; Li WW; Yu HQ
    Environ Sci Technol; 2022 Mar; 56(6):3812-3820. PubMed ID: 35226466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Analysis Reveals the Inhibitory Effect of Cu
    Peng J; Feng F; Zhang G; Zou L
    Appl Biochem Biotechnol; 2023 Nov; ():. PubMed ID: 37979084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32.
    O'Loughlin EJ
    Environ Sci Technol; 2008 Sep; 42(18):6876-82. PubMed ID: 18853803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens.
    Lovley DR; Phillips EJ; Lonergan DJ
    Appl Environ Microbiol; 1989 Mar; 55(3):700-6. PubMed ID: 16347876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens.
    Arnold RG; Hoffmann MR; Dichristina TJ; Picardal FW
    Appl Environ Microbiol; 1990 Sep; 56(9):2811-7. PubMed ID: 16348289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens.
    Haas JR; DiChristina TJ
    Environ Sci Technol; 2002 Feb; 36(3):373-80. PubMed ID: 11871551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite.
    Bae S; Lee Y; Kwon MJ; Lee W
    J Hazard Mater; 2014 Jun; 274():24-31. PubMed ID: 24762697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Strain-Triggered Biogeochemical Cycle of Arsenic.
    Min D; Cheng L; Liu DF; Liu JQ; Li WW; Yu HQ
    Environ Sci Technol; 2022 Nov; 56(22):16410-16418. PubMed ID: 36268776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.