These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37601367)

  • 61. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design.
    Yuan W; Cheng J; Huang H; Xiong S; Gao J; Zhang J; Feng S
    Ecotoxicol Environ Saf; 2019 Jul; 175():138-147. PubMed ID: 30897412
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dissolution and reduction of magnetite by bacteria.
    Kostka JE; Nealson KH
    Environ Sci Technol; 1995 Oct; 29(10):2535-40. PubMed ID: 11539843
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY.
    Turick CE; Tisa LS; Caccavo F
    Appl Environ Microbiol; 2002 May; 68(5):2436-44. PubMed ID: 11976119
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
    Jones ME; Fennessey CM; DiChristina TJ; Taillefert M
    Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200.
    Picardal FW; Arnold RG; Couch H; Little AM; Smith ME
    Appl Environ Microbiol; 1993 Nov; 59(11):3763-70. PubMed ID: 8285682
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Impact of Bacterial Strain on the Products of Dissimilatory Iron Reduction.
    Salas EC; Berelson WM; Hammond DE; Kampf AR; Nealson KH
    Geochim Cosmochim Acta; 2010 Jan; 74(2):574-583. PubMed ID: 20161499
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium.
    Fredrickson JK; Zachara JM; Kukkadapu RK; Gorby YA; Smith SC; Brown CF
    Environ Sci Technol; 2001 Feb; 35(4):703-12. PubMed ID: 11349281
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ferric iron reduction-linked growth yields of Shewanella putrefaciens MR-1.
    Myers CR; Myers JM
    J Appl Bacteriol; 1994 Mar; 76(3):253-8. PubMed ID: 8157545
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.
    Kostka JE; Dalton DD; Skelton H; Dollhopf S; Stucki JW
    Appl Environ Microbiol; 2002 Dec; 68(12):6256-62. PubMed ID: 12450850
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C.
    Li P; Mei J; Xie J
    Food Res Int; 2022 Nov; 161():111781. PubMed ID: 36192877
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200.
    DiChristina TJ
    J Bacteriol; 1992 Mar; 174(6):1891-6. PubMed ID: 1548235
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sensing and Approaching Toxic Arsenate by
    Cheng L; Min D; Liu DF; Li WW; Yu HQ
    Environ Sci Technol; 2019 Dec; 53(24):14604-14611. PubMed ID: 31747260
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phylogeny of marine and freshwater Shewanella: reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina.
    Reid GA; Gordon EH
    Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():189-91. PubMed ID: 10028262
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin.
    Wu C; Cheng YY; Yin H; Song XN; Li WW; Zhou XX; Zhao LP; Tian LJ; Han JC; Yu HQ
    Sci Rep; 2013; 3():1945. PubMed ID: 23736081
    [TBL] [Abstract][Full Text] [Related]  

  • 78.
    Mateos G; Bonilla AM; de Francisco de Polanco S; Martínez JM; Escudero C; Rodríguez N; Sánchez-Andrea I; Amils R
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014003
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation.
    Royer RA; Burgos WD; Fisher AS; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 May; 36(9):1939-46. PubMed ID: 12026974
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor.
    Philips J; Van den Driessche N; De Paepe K; Prévoteau A; Gralnick JA; Arends JBA; Rabaey K
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30054363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.