These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3760254)

  • 1. Competition and the dynamics of axon arbor growth in the cricket.
    Murphey RK
    J Comp Neurol; 1986 Sep; 251(1):100-10. PubMed ID: 3760254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of engrailed in an array of identified sensory neurons: comparison with position, axonal arborization, and synaptic connectivity.
    Blagburn JM; Gibbon CR; Bacon JP
    J Neurobiol; 1995 Dec; 28(4):493-505. PubMed ID: 8592109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A topographic map of sensory cell terminal arborizations in the cricket CNS; correlation with birthday and position in a sensory array.
    Murphey RK; Jacklet A; Schuster L
    J Comp Neurol; 1980 May; 191(1):53-64. PubMed ID: 7400391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional changes in an identified cricket neuron after separation from the soma. I. Structural changes.
    Clark RD
    J Comp Neurol; 1976 Nov; 170(2):253-65. PubMed ID: 62768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition controls the growth of an identified axonal arborization.
    Murphey RK; Lemere CA
    Science; 1984 Jun; 224(4655):1352-5. PubMed ID: 6729457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a sensory afferent projection in the grasshopper embryo. II. Growth and branching of peripheral sensory axons within the central nervous system.
    Shankland M
    J Embryol Exp Morphol; 1981 Aug; 64():187-209. PubMed ID: 6171606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and rearrangement of synapses in a growing insect.
    Kämper G
    Biol Chem Hoppe Seyler; 1994 Nov; 375(11):741-4. PubMed ID: 7695836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deafferentation slows the growth of specific dendrites of identified giant interneurons.
    Murphey RK; Mendenhall B; Palka J; Edwards JS
    J Comp Neurol; 1975 Feb; 159(3):407-18. PubMed ID: 1112917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition regulates the efficacy of an identified synapse in crickets.
    Shepherd D; Murphey RK
    J Neurosci; 1986 Nov; 6(11):3152-60. PubMed ID: 3772426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of the cricket cercal sensory system: genetic and epigenetic control.
    Murphey RK; Chiba A
    J Neurobiol; 1990 Jan; 21(1):120-37. PubMed ID: 2181060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal and abnormal development of an identified leech motor neuron.
    Kuwada JY
    J Embryol Exp Morphol; 1984 Feb; 79():125-37. PubMed ID: 6716040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the segmental pattern of sensory neuron projections in the chick hindlimb under conditions of altered cell adhesion molecule function.
    Honig MG; Rutishauser US
    Dev Biol; 1996 May; 175(2):325-37. PubMed ID: 8626036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of axonal growth in the mature mammalian nervous system.
    Crutcher KA
    Acta Neurobiol Exp (Wars); 1990; 50(4-5):115-24. PubMed ID: 2130633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M; Pallas SL; Lim S; Finlay BL
    J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal growth potential of lumbar dorsal root ganglion neurons in an organ culture system: response of nerve growth factor-sensitive neurons to neuronal injury and an inflammatory cytokine.
    Aoki Y; An HS; Takahashi K; Miyamoto K; Lenz ME; Moriya H; Masuda K
    Spine (Phila Pa 1976); 2007 Apr; 32(8):857-63. PubMed ID: 17426629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chick wing innervation. II. Morphology of motor and sensory axons and their growth cones during early development.
    Hollyday M; Morgan-Carr M
    J Comp Neurol; 1995 Jun; 357(2):254-71. PubMed ID: 7665728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology of retinogeniculate X and Y axon arbors in monocularly enucleated cats.
    Garraghty PE; Sur M; Weller RE; Sherman SM
    J Comp Neurol; 1986 Sep; 251(2):198-215. PubMed ID: 3782498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.