These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 3760257)

  • 1. Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation.
    Smith GM; Miller RH; Silver J
    J Comp Neurol; 1986 Sep; 251(1):23-43. PubMed ID: 3760257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplants of immature astrocytes promote axonal regeneration in the adult rat brain.
    Wunderlich G; Stichel CC; Schroeder WO; Müller HW
    Glia; 1994 Jan; 10(1):49-58. PubMed ID: 7507887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust regeneration of CNS axons through a track depleted of CNS glia.
    Moon LD; Brecknell JE; Franklin RJ; Dunnett SB; Fawcett JW
    Exp Neurol; 2000 Jan; 161(1):49-66. PubMed ID: 10683273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of transplanted astrocytes for the regeneration of CNS axons].
    Imaizumi T; Lankford KL; Kocsis JD; Hashi K
    No To Shinkei; 2001 Jul; 53(7):632-8. PubMed ID: 11517487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons.
    Prieto M; Chauvet N; Alonso G
    Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression of TAPA (CD81) correlates with the reactive response of astrocytes in the developing rat CNS.
    Peduzzi JD; Grayson TB; Fischer FR; Geisert EE
    Exp Neurol; 1999 Dec; 160(2):460-8. PubMed ID: 10619563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and degeneration of axons on astrocyte surfaces: effects on extracellular matrix and on later axonal growth.
    Ard MD; Schachner M; Rapp JT; Faissner A
    Glia; 1993 Dec; 9(4):248-59. PubMed ID: 8112818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration.
    Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S
    J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The astrocyte inhibition of peripheral nerve regeneration is reversed by Schwann cells.
    Guénard V; Aebischer P; Bunge RP
    Exp Neurol; 1994 Mar; 126(1):44-60. PubMed ID: 8157126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mab22C11 antibody to amyloid precursor protein recognizes a protein associated with specific astroglial cells of the rat central nervous system characterized by their capacity to support axonal outgrowth.
    Chauvet N; Apert C; Dumoulin A; Epelbaum J; Alonso G
    J Comp Neurol; 1997 Jan; 377(4):550-64. PubMed ID: 9007192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions.
    Alonso G; Privat A
    J Neurosci Res; 1993 Apr; 34(5):523-38. PubMed ID: 8478987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars.
    McKeon RJ; Höke A; Silver J
    Exp Neurol; 1995 Nov; 136(1):32-43. PubMed ID: 7589332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultured epithelioid astrocytes migrate after transplantation into the adult rat brain.
    Emmett CJ; Lawrence JM; Raisman G; Seeley PJ
    J Comp Neurol; 1991 Sep; 311(3):330-41. PubMed ID: 1955586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of nigrostriatal dopaminergic axons after transplantation of olfactory ensheathing cells and fibroblasts prevents fibrotic scar formation at the lesion site.
    Teng X; Nagata I; Li HP; Kimura-Kuroda J; Sango K; Kawamura K; Raisman G; Kawano H
    J Neurosci Res; 2008 Nov; 86(14):3140-50. PubMed ID: 18615647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar.
    Dusart I; Morel MP; Wehrlé R; Sotelo C
    J Comp Neurol; 1999 Jun; 408(3):399-418. PubMed ID: 10340514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.