BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37602666)

  • 1. Aspects of human uterine creatine metabolism during the menstrual cycle and at term pregnancy†.
    Philip M; Snow RJ; Della Gatta PA; Callahan DL; Bellofiore N; Salamonsen LA; Palmer KR; Ellery SJ
    Biol Reprod; 2023 Dec; 109(6):839-850. PubMed ID: 37602666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine biosynthesis and transport by the term human placenta.
    Ellery SJ; Della Gatta PA; Bruce CR; Kowalski GM; Davies-Tuck M; Mockler JC; Murthi P; Walker DW; Snow RJ; Dickinson H
    Placenta; 2017 Apr; 52():86-93. PubMed ID: 28454702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review.
    Braissant O; Henry H
    J Inherit Metab Dis; 2008 Apr; 31(2):230-9. PubMed ID: 18392746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine biosynthesis and transport in health and disease.
    Joncquel-Chevalier Curt M; Voicu PM; Fontaine M; Dessein AF; Porchet N; Mention-Mulliez K; Dobbelaere D; Soto-Ares G; Cheillan D; Vamecq J
    Biochimie; 2015 Dec; 119():146-65. PubMed ID: 26542286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine metabolism at the uterine-conceptus interface during early gestation in sheep†.
    Sah N; Stenhouse C; Halloran KM; Moses RM; Seo H; Burghardt RC; Johnson GA; Wu G; Bazer FW
    Biol Reprod; 2022 Dec; 107(6):1528-1539. PubMed ID: 36054379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes.
    Braissant O; Béard E; Torrent C; Henry H
    Neurobiol Dis; 2010 Feb; 37(2):423-33. PubMed ID: 19879361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Early-Onset Pre-Eclampsia on Placental Creatine Metabolism in the Third Trimester.
    Ellery SJ; Murthi P; Gatta PAD; May AK; Davies-Tuck ML; Kowalski GM; Callahan DL; Bruce CR; Wallace EM; Walker DW; Dickinson H; Snow RJ
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders.
    Stockler-Ipsiroglu S; van Karnebeek CD
    Semin Neurol; 2014 Jul; 34(3):350-6. PubMed ID: 25192512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Placental creatine metabolism in cases of placental insufficiency and reduced fetal growth.
    Ellery SJ; Murthi P; Davies-Tuck ML; Della Gatta PA; May AK; Kowalski GM; Callahan DL; Bruce CR; Alers NO; Miller SL; Erwich JJHM; Wallace EM; Walker DW; Dickinson H; Snow RJ
    Mol Hum Reprod; 2019 Aug; 25(8):495-505. PubMed ID: 31323678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal creatine homeostasis is altered during gestation in the spiny mouse: is this a metabolic adaptation to pregnancy?
    Ellery SJ; LaRosa DA; Kett MM; Della Gatta PA; Snow RJ; Walker DW; Dickinson H
    BMC Pregnancy Childbirth; 2015 Apr; 15():92. PubMed ID: 25885219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inborn errors of creatine metabolism and epilepsy.
    Leuzzi V; Mastrangelo M; Battini R; Cioni G
    Epilepsia; 2013 Feb; 54(2):217-27. PubMed ID: 23157605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of homoarginine on creatine accumulation and biosynthesis in the mouse.
    Lygate CA; Lake HA; McAndrew DJ; Neubauer S; Zervou S
    Front Nutr; 2022; 9():969702. PubMed ID: 36017222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging reveals specific anatomical changes in the brain of Agat- and Gamt-mice attributed to creatine depletion and guanidinoacetate alteration.
    Sinha A; Ahmed S; George C; Tsagaris M; Naufer A; von Both I; Tkachyova I; van Eede M; Henkelman M; Schulze A
    J Inherit Metab Dis; 2020 Jul; 43(4):827-842. PubMed ID: 31951021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine metabolism at the uterine-placental interface throughout gestation in sheep†.
    Sah N; Stenhouse C; Halloran KM; Moses RM; Seo H; Burghardt RC; Johnson GA; Wu G; Bazer FW
    Biol Reprod; 2023 Jul; 109(1):107-118. PubMed ID: 37171613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disorders of creatine transport and metabolism.
    Longo N; Ardon O; Vanzo R; Schwartz E; Pasquali M
    Am J Med Genet C Semin Med Genet; 2011 Feb; 157C(1):72-8. PubMed ID: 21308988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse.
    Dickinson H; Ireland ZJ; Larosa DA; O'Connell BA; Ellery S; Snow R; Walker DW
    Reprod Sci; 2013 Sep; 20(9):1096-102. PubMed ID: 23427185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: study protocol.
    De Guingand DL; Ellery SJ; Davies-Tuck ML; Dickinson H
    BMJ Open; 2019 Jan; 9(1):e026756. PubMed ID: 30647050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal expression of the creatine metabolism related genes agat, gamt and ct1 during zebrafish embryogenesis.
    Wang L; Zhang Y; Shao M; Zhang H
    Int J Dev Biol; 2007; 51(3):247-53. PubMed ID: 17486546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine deficiency syndromes.
    Schulze A
    Mol Cell Biochem; 2003 Feb; 244(1-2):143-50. PubMed ID: 12701824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1.
    Braissant O; Henry H; Villard AM; Speer O; Wallimann T; Bachmann C
    BMC Dev Biol; 2005 May; 5():9. PubMed ID: 15918910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.