These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37602815)

  • 1. Hydrogenation of CO
    Gelman-Tropp S; Kirillov E; Hey-Hawkins E; Gelman D
    Chemistry; 2023 Nov; 29(63):e202301915. PubMed ID: 37602815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond.
    Wang Y; Huang Z; Liu G; Huang Z
    Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of iron complexes catalyzed in the
    Shen X; Wang W; Wang Q; Liu J; Huang F; Sun C; Yang C; Chen D
    Phys Chem Chem Phys; 2021 Aug; 23(31):16675-16689. PubMed ID: 34337631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral-at-Metal: Iridium(III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO
    Ocansey E; Darkwa J; Makhubela BCE
    Front Chem; 2020; 8():591353. PubMed ID: 33304883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO
    Mills MR; Barnes CL; Bernskoetter WH
    Inorg Chem; 2018 Feb; 57(3):1590-1597. PubMed ID: 29350924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium and Ruthenium Complexes of
    Siek S; Burks DB; Gerlach DL; Liang G; Tesh JM; Thompson CR; Qu F; Shankwitz JE; Vasquez RM; Chambers N; Szulczewski GJ; Grotjahn DB; Webster CE; Papish ET
    Organometallics; 2017 Mar; 36(6):1091-1106. PubMed ID: 29540958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions.
    Mujahed S; Valentini F; Cohen S; Vaccaro L; Gelman D
    ChemSusChem; 2019 Oct; 12(20):4693-4699. PubMed ID: 31368199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface functionalized highly porous date seed derived activated carbon and MoS
    Bharath G; Rambabu K; Morajkar PP; Jayaraman R; Theerthagiri J; Lee SJ; Choi MY; Banat F
    J Hazard Mater; 2021 May; 409():124980. PubMed ID: 33418290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study on ligand assisted vs. ligand participation mechanisms for CO
    Mandal SC; Rawat KS; Pathak B
    Phys Chem Chem Phys; 2019 Feb; 21(7):3932-3941. PubMed ID: 30702721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts.
    Wang S; Huang H; Roisnel T; Bruneau C; Fischmeister C
    ChemSusChem; 2019 Jan; 12(1):179-184. PubMed ID: 30325585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.