These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 37603243)

  • 1. Highly active Ru/TiO
    Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the catalytic wet air oxidation of p-hydroxybenzoic acid on a fresh ruthenium catalyst supported by different oxides.
    Hammedi T; Bensouilah R; Ouakouak A; Llorca J; Cabello FM; Ksibi Z
    Heliyon; 2023 Oct; 9(10):e20875. PubMed ID: 37867862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Noble-Metal Ru@CoMn
    Cui Y; Zeng Z; Hou Y; Ma S; Shen W; Huang Z
    Molecules; 2024 May; 29(10):. PubMed ID: 38792116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Ru/Ce@Co Catalyst with an Optimized Support Structure for Propane Oxidation.
    Wang A; Ding J; Li M; Song P; Zhao Z; Guo Y; Guo Y; Wang L; Dai Q; Zhan W
    Environ Sci Technol; 2024 Jul; 58(28):12742-12753. PubMed ID: 38959431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total Oxidation of Propane over a Ru/CeO
    Hu Z; Wang Z; Guo Y; Wang L; Guo Y; Zhang J; Zhan W
    Environ Sci Technol; 2018 Aug; 52(16):9531-9541. PubMed ID: 30040879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.
    Song A; Lu G
    Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel One-Step Hydrothermal Preparation of Ru/Sn
    Fan L; Sun Q; Zheng W; Tang Q; Zhang T; Tian M
    Nanoscale Res Lett; 2020 May; 15(1):109. PubMed ID: 32409877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the In-Situ-Formed Surface (Pt-S-O)-Ti Active Structure in SO
    Chen W; Zheng J; Fang Y; Wang Y; Hu J; Zhu Y; Zhu X; Li W; Zhang Q; Pan C; Zhang B; Qiu X; Wang S; Cui S; Wang J; Wu J; Luo Z; Guo Y
    Environ Sci Technol; 2024 Feb; 58(6):3041-3053. PubMed ID: 38291736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of High-Energy Faceted TiO
    Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL
    Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
    Lv Z; Zheng W; Chen Z; Tang Z; Mo W; Yin G
    Dalton Trans; 2016 Jul; 45(28):11369-83. PubMed ID: 27333442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce-Mn-Ru/TiO
    Ren Z; Zhang H; Wang G; Pan Y; Yu Z; Long H
    ACS Omega; 2020 Dec; 5(51):33357-33371. PubMed ID: 33403298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Strong Metal-Support Interaction by Alkaline Earth Metal Salts.
    Qiu G; Pei Q; Yu Y; Jing Z; Wang J; He T; Chen P
    Chem Asian J; 2021 Sep; 16(18):2633-2640. PubMed ID: 34288552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ru/CeO
    Wang Z; Huang Z; Brosnahan JT; Zhang S; Guo Y; Guo Y; Wang L; Wang Y; Zhan W
    Environ Sci Technol; 2019 May; 53(9):5349-5358. PubMed ID: 30990306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of TiO
    Tolek W; Nanthasanti N; Pongthawornsakun B; Praserthdam P; Panpranot J
    Sci Rep; 2021 May; 11(1):9786. PubMed ID: 33963216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the dichloromethane catalytic combustion over ruthenium-based catalysts: Unveiling the roles of acid types in dissociative adsorption and by-products formation.
    Ying Q; Liu Y; Li H; Zhang Y; Wu Z
    J Colloid Interface Sci; 2022 Jan; 605():537-546. PubMed ID: 34340038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.