These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3760340)

  • 1. On the use of symmetrized dot patterns for the visual characterization of speech waveforms and other sampled data.
    Pickover CA
    J Acoust Soc Am; 1986 Sep; 80(3):955-60. PubMed ID: 3760340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine structure spectrography and its application in speech.
    Dajani HR; Wong W; Kunov H
    J Acoust Soc Am; 2005 Jun; 117(6):3902-18. PubMed ID: 16018492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microprocessor-based speech processing system.
    Guillemin BJ; Nguyen DT
    J Speech Hear Res; 1984 Jun; 27(2):311-7. PubMed ID: 6738043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochleagram-based audio pattern separation using two-dimensional non-negative matrix factorization with automatic sparsity adaptation.
    Gao B; Woo WL; Khor LC
    J Acoust Soc Am; 2014 Mar; 135(3):1171-85. PubMed ID: 24606260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational speech segregation based on an auditory-inspired modulation analysis.
    May T; Dau T
    J Acoust Soc Am; 2014 Dec; 136(6):3350. PubMed ID: 25480079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind deconvolution of audio-frequency signals using the self-deconvolving data restoration algorithm.
    Caron JN
    J Acoust Soc Am; 2004 Jul; 116(1):373-8. PubMed ID: 15295997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impulse-noise suppression in speech using the stationary wavelet transform.
    Nongpiur RC; Shpak DJ
    J Acoust Soc Am; 2013 Feb; 133(2):866-79. PubMed ID: 23363105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrony capture filterbank: auditory-inspired signal processing for tracking individual frequency components in speech.
    Kumaresan R; Peddinti VK; Cariani P
    J Acoust Soc Am; 2013 Jun; 133(6):4290-310. PubMed ID: 23742379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the reliability of Grade, Roughness and Breathiness scores by means of synthetic speech stimuli.
    Schoentgen J; Fraj S; Lucero JC
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):5-13. PubMed ID: 24117123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards online maximum-likelihood-based speech clustering and separation.
    Souden M; Kinoshita K; Nakatani T
    J Acoust Soc Am; 2013 May; 133(5):EL339-45. PubMed ID: 23656091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonetic applications of the time-corrected instantaneous frequency spectrogram.
    Fulop SA
    Phonetica; 2007; 64(4):237-62. PubMed ID: 18421245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit.
    Arnold D; Tomaschek F; Sering K; Lopez F; Baayen RH
    PLoS One; 2017; 12(4):e0174623. PubMed ID: 28394938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresolutional modification of speech signals for listeners with hearing impairment.
    Erogul O; Karagöz I
    J Rehabil Res Dev; 1999 Jul; 36(3):230-6. PubMed ID: 10659806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human hearing modelling real-time spectrography for visual feedback in singing training.
    Howard DM
    Folia Phoniatr Logop; 2005; 57(5-6):328-41. PubMed ID: 16282693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The least-squares invertible constant-Q spectrogram and its application to phase vocoding.
    Ingle AN; Sethares WA
    J Acoust Soc Am; 2012 Aug; 132(2):894-903. PubMed ID: 22894212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction.
    Kollmeier B; Koch R
    J Acoust Soc Am; 1994 Mar; 95(3):1593-602. PubMed ID: 8176062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optimal ratio time-frequency mask for speech separation in terms of the signal-to-noise ratio.
    Liang S; Liu W; Jiang W; Xue W
    J Acoust Soc Am; 2013 Nov; 134(5):EL452-8. PubMed ID: 24181990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal Features: From Voice Identification to Speech Recognition by Machine.
    Li X; Mills M
    Technol Cult; 2019; 60(2S):S129-S160. PubMed ID: 31231075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency Fourier analysis of speech rhythm.
    Tilsen S; Johnson K
    J Acoust Soc Am; 2008 Aug; 124(2):EL34-9. PubMed ID: 18681499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of glottal excitation cycles in running speech.
    Hess WJ
    Phonetica; 1995; 52(3):196-204. PubMed ID: 7568395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.