These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37603696)

  • 1. Hydrophobic Silica Microcavities with Sustainable Nonlinear Photonic Performance.
    Xie J; Wang Y; Kang H; Cheng J; Shen X
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):41067-41072. PubMed ID: 37603696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles.
    Zhu S; Shi L; Yuan S; Xu X; Zhang X
    Opt Lett; 2017 Dec; 42(24):5133-5136. PubMed ID: 29240155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical microcavity: sensing down to single molecules and atoms.
    Yoshie T; Tang L; Su SY
    Sensors (Basel); 2011; 11(2):1972-91. PubMed ID: 22319393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-threshold parametric oscillation in organically modified microcavities.
    Shen X; Beltran RC; Diep VM; Soltani S; Armani AM
    Sci Adv; 2018 Jan; 4(1):eaao4507. PubMed ID: 29322095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Nanoparticle Detection Using Optical Microcavities.
    Zhi Y; Yu XC; Gong Q; Yang L; Xiao YF
    Adv Mater; 2017 Mar; 29(12):. PubMed ID: 28060436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities.
    Yoshiki W; Honda Y; Tetsumoto T; Furusawa K; Sekine N; Tanabe T
    Sci Rep; 2017 Sep; 7(1):10688. PubMed ID: 28878393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of gain spiking of optical frequency comb in a microcavity.
    Zheng Y; Qin T; Yang J; Chen X; Ge L; Wan W
    Opt Express; 2017 Dec; 25(25):31140-31147. PubMed ID: 29245791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Q surface-plasmon-polariton whispering-gallery microcavity.
    Min B; Ostby E; Sorger V; Ulin-Avila E; Yang L; Zhang X; Vahala K
    Nature; 2009 Jan; 457(7228):455-8. PubMed ID: 19158793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.
    Soltani M; Ilchenko V; Matsko A; Savchenkov A; Schlafer J; Ryan C; Maleki L
    Opt Lett; 2016 Sep; 41(18):4375-8. PubMed ID: 27628401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting.
    Liu W; Chen YL; Tang SJ; Vollmer F; Xiao YF
    Nano Lett; 2021 Feb; 21(4):1566-1575. PubMed ID: 33356315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification.
    Rasoloniaina A; Huet V; Nguyên TK; Le Cren E; Mortier M; Michely L; Dumeige Y; Féron P
    Sci Rep; 2014 Feb; 4():4023. PubMed ID: 24503956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow-threshold microcavity Raman laser on a microelectronic chip.
    Kippenberg TJ; Spillane SM; Armani DK; Vahala KJ
    Opt Lett; 2004 Jun; 29(11):1224-6. PubMed ID: 15209254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile microfluidic fabrication of monodispersed self-coupling microcavity with fine tunability.
    Zhang R; Liu Y; Liu Q; Zhang Y; Ma X; Song Q; Feng H
    Electrophoresis; 2020 Sep; 41(16-17):1418-1424. PubMed ID: 31797398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greater than one billion Q factor for on-chip microresonators.
    Wu L; Wang H; Yang Q; Ji QX; Shen B; Bao C; Gao M; Vahala K
    Opt Lett; 2020 Sep; 45(18):5129-5131. PubMed ID: 32932469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcavity Nonlinear Optics with an Organically Functionalized Surface.
    Chen JH; Shen X; Tang SJ; Cao QT; Gong Q; Xiao YF
    Phys Rev Lett; 2019 Oct; 123(17):173902. PubMed ID: 31702269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.
    Tang L; Yoshie T
    Opt Lett; 2010 Sep; 35(18):3144-6. PubMed ID: 20847806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling.
    Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT
    Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.
    Ooka Y; Tetsumoto T; Fushimi A; Yoshiki W; Tanabe T
    Sci Rep; 2015 Jun; 5():11312. PubMed ID: 26086849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced nonlinear interaction in a microcavity under coherent excitation.
    Serna S; Oden J; Hanna M; Caer C; Le Roux X; Sauvan C; Delaye P; Cassan E; Dubreuil N
    Opt Express; 2015 Nov; 23(23):29964-77. PubMed ID: 26698478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications.
    Pfeifle J; Coillet A; Henriet R; Saleh K; Schindler P; Weimann C; Freude W; Balakireva IV; Larger L; Koos C; Chembo YK
    Phys Rev Lett; 2015 Mar; 114(9):093902. PubMed ID: 25793816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.