These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37603798)

  • 1. Accurate SCC-DFTB Parametrization of Liquid Water with Improved Atomic Charges and Iterative Boltzmann Inversion.
    Cinq N; Simon A; Louisnard F; Cuny J
    J Phys Chem B; 2023 Sep; 127(35):7590-7601. PubMed ID: 37603798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate SCC-DFTB Parametrization for Bulk Water.
    Lourenço MP; Dos Santos EC; Pettersson LGM; Duarte HA
    J Chem Theory Comput; 2020 Mar; 16(3):1768-1778. PubMed ID: 32040315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges.
    Cuny J; Cerda Calatayud J; Ansari N; Hassanali AA; Rapacioli M; Simon A
    J Phys Chem B; 2020 Aug; 124(34):7421-7432. PubMed ID: 32696649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water.
    Goyal P; Elstner M; Cui Q
    J Phys Chem B; 2011 May; 115(20):6790-805. PubMed ID: 21526802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
    Gaus M; Cui Q; Elstner M
    J Chem Theory Comput; 2012 Apr; 7(4):931-948. PubMed ID: 23204947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing pressure consistency and transferability of structure-based coarse-graining.
    Tang J; Kobayashi T; Zhang H; Fukuzawa K; Itoh S
    Phys Chem Chem Phys; 2023 Jan; 25(3):2256-2264. PubMed ID: 36594875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCC-DFTB-PIMD Method To Evaluate a Multidimensional Quantum Free-Energy Surface for a Proton-Transfer Reaction.
    Kosugi K; Nakano H; Sato H
    J Chem Theory Comput; 2019 Sep; 15(9):4965-4973. PubMed ID: 31419131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach.
    Korchagina KA; Simon A; Rapacioli M; Spiegelman F; Cuny J
    J Phys Chem A; 2016 Nov; 120(45):9089-9100. PubMed ID: 27809528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties.
    Fu CC; Kulkarni PM; Shell MS; Leal LG
    J Chem Phys; 2012 Oct; 137(16):164106. PubMed ID: 23126694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark Study of the SCC-DFTB Approach for a Biomolecular Proton Channel.
    Liang R; Swanson JM; Voth GA
    J Chem Theory Comput; 2014 Jan; 10(1):451-462. PubMed ID: 25104919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An SCC-DFTB Repulsive Potential for Various ZnO Polymorphs and the ZnO-Water System.
    Hellström M; Jorner K; Bryngelsson M; Huber SE; Kullgren J; Frauenheim T; Broqvist P
    J Phys Chem C Nanomater Interfaces; 2013 Aug; 117(33):17004-17015. PubMed ID: 23991228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Consistent Scheme Combining MD and Order-
    Ishii Y; Matubayasi N
    J Chem Theory Comput; 2020 Jan; 16(1):651-665. PubMed ID: 31873016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions.
    Hou G; Zhu X; Elstner M; Cui Q
    J Chem Theory Comput; 2012 Nov; 8(11):4293-4304. PubMed ID: 23275762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models.
    Han B; Isborn CM; Shi L
    J Chem Theory Comput; 2021 Feb; 17(2):889-901. PubMed ID: 33405925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.