These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37603874)

  • 1. Structure-Activity Relationships of the Antimicrobial Peptide Natural Product Apidaecin.
    Skowron KJ; Baliga C; Johnson T; Kremiller KM; Castroverde A; Dean TT; Allen AC; Lopez-Hernandez AM; Aleksandrova EV; Klepacki D; Mankin AS; Polikanov YS; Moore TW
    J Med Chem; 2023 Sep; 66(17):11831-11842. PubMed ID: 37603874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria.
    Mangano K; Florin T; Shao X; Klepacki D; Chelysheva I; Ignatova Z; Gao Y; Mankin AS; Vázquez-Laslop N
    Elife; 2020 Oct; 9():. PubMed ID: 33031031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charting the sequence-activity landscape of peptide inhibitors of translation termination.
    Baliga C; Brown TJ; Florin T; Colon S; Shah V; Skowron KJ; Kefi A; Szal T; Klepacki D; Moore TW; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33674389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues.
    Gobbo M; Biondi L; Filira F; Gennaro R; Benincasa M; Scolaro B; Rocchi R
    J Med Chem; 2002 Sep; 45(20):4494-504. PubMed ID: 12238928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of translation termination by the antimicrobial peptide Drosocin.
    Mangano K; Klepacki D; Ohanmu I; Baliga C; Huang W; Brakel A; Krizsan A; Polikanov YS; Hoffmann R; Vázquez-Laslop N; Mankin AS
    Nat Chem Biol; 2023 Sep; 19(9):1082-1090. PubMed ID: 36997647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo target exploration of apidaecin based on Acquired Resistance induced by Gene Overexpression (ARGO assay).
    Matsumoto K; Yamazaki K; Kawakami S; Miyoshi D; Ooi T; Hashimoto S; Taguchi S
    Sci Rep; 2017 Sep; 7(1):12136. PubMed ID: 28939819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome.
    Florin T; Maracci C; Graf M; Karki P; Klepacki D; Berninghausen O; Beckmann R; Vázquez-Laslop N; Wilson DN; Rodnina MV; Mankin AS
    Nat Struct Mol Biol; 2017 Sep; 24(9):752-757. PubMed ID: 28741611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance.
    Casteels P; Romagnolo J; Castle M; Casteels-Josson K; Erdjument-Bromage H; Tempst P
    J Biol Chem; 1994 Oct; 269(42):26107-15. PubMed ID: 7929322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mapping of amino acid residues responsible for the antibacterial action of apidaecin.
    Taguchi S; Ozaki A; Nakagawa K; Momose H
    Appl Environ Microbiol; 1996 Dec; 62(12):4652-5. PubMed ID: 8953737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms.
    Vanzolini T; Bruschi M; Rinaldi AC; Magnani M; Fraternale A
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid composition of the outer membrane of Escherichia coli influences its susceptibility against antimicrobial peptide apidaecin 1b.
    Schmidt R; Yonghong D; Hoffmann R
    Diagn Microbiol Infect Dis; 2018 Apr; 90(4):316-323. PubMed ID: 29329756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery.
    Lai PK; Tresnak DT; Hackel BJ
    Biotechnol Bioeng; 2019 Oct; 116(10):2439-2450. PubMed ID: 31209863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amphipathic design in helical antimicrobial peptides.
    Bui Thi Phuong H; Doan Ngan H; Le Huy B; Vu Dinh H; Luong Xuan H
    ChemMedChem; 2024 Apr; 19(7):e202300480. PubMed ID: 38408263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates.
    Goldbach T; Knappe D; Reinsdorf C; Berg T; Hoffmann R
    J Pept Sci; 2016 Sep; 22(9):592-9. PubMed ID: 27406684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin.
    Taguchi S; Nakagawa K; Maeno M; Momose H
    Appl Environ Microbiol; 1994 Oct; 60(10):3566-72. PubMed ID: 7986034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of apidaecin through secondary structure correlation.
    Dutta RC; Nagpal S; Salunke DM
    Int J Biochem Cell Biol; 2008; 40(5):1005-15. PubMed ID: 18083056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of in vitro innate immunomodulation by insect-derived short proline-rich antimicrobial peptides points to direct antibacterial action in vivo.
    Fritsche S; Knappe D; Berthold N; von Buttlar H; Hoffmann R; Alber G
    J Pept Sci; 2012 Oct; 18(10):599-608. PubMed ID: 22936623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the antimicrobial peptide Bac7 by deep mutational scanning.
    Koch P; Schmitt S; Heynisch A; Gumpinger A; Wüthrich I; Gysin M; Shcherbakov D; Hobbie SN; Panke S; Held M
    BMC Biol; 2022 May; 20(1):114. PubMed ID: 35578204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship.
    Tian T; Xie W; Liu L; Fan S; Zhang H; Qin Z; Yang C
    Crit Rev Food Sci Nutr; 2023; 63(21):5430-5445. PubMed ID: 34955061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88.
    Lauer SM; Reepmeyer M; Berendes O; Klepacki D; Gasse J; Gabrielli S; Grubmüller H; Bock LV; Krizsan A; Nikolay R; Spahn CMT; Hoffmann R
    Nat Commun; 2024 May; 15(1):3945. PubMed ID: 38730238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.