BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37603987)

  • 1. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation.
    Mun B; Kim R; Jeong H; Kang B; Kim J; Son HY; Lim J; Rho HW; Lim EK; Haam S
    Biosens Bioelectron; 2023 Nov; 239():115592. PubMed ID: 37603987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-Doped Microfluidic Chip for Rapid and Efficient Immunomagnetic Separation and Detection of Breast Cancer Cell-Derived Exosomes.
    Fang H; Liu M; Jiang W
    Appl Biochem Biotechnol; 2023 May; 195(5):3109-3121. PubMed ID: 36542270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microfluidic strategies for separation and analysis of circulating exosomes].
    Chen W; Gan Z; Qin J
    Se Pu; 2021 Sep; 39(9):968-980. PubMed ID: 34486836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ExoSD chips for high-purity immunomagnetic separation and high-sensitivity detection of gastric cancer cell-derived exosomes.
    Yu Z; Lin S; Xia F; Liu Y; Zhang D; Wang F; Wang Y; Li Q; Niu J; Cao C; Cui D; Sheng N; Ren J; Wang Z; Chen D
    Biosens Bioelectron; 2021 Dec; 194():113594. PubMed ID: 34474280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles.
    Kim R; Mun B; Lim S; Park C; Kim J; Lim J; Jeong H; Son HY; Rho HW; Lim EK; Haam S
    Small; 2024 Mar; 20(13):e2307262. PubMed ID: 37963850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Extraction of exosome by gel electrophoresis microfluidic chip and determination of miRNA-21 in exosome of human plasma].
    Luo D; Ran F; Wu L; Zhang J; Ren F; Liu J; Zhang B; Chen Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):663-672. PubMed ID: 33645164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic-nanowaxberry-based microfluidic ExoSIC for affinity and continuous separation of circulating exosomes towards cancer diagnosis.
    Ding L; Liu X; Zhang Z; Liu LE; He S; Wu Y; Effah CY; Yang R; Zhang A; Chen W; Yarmamat M; Qu L; Yang X; Wu Y
    Lab Chip; 2023 Mar; 23(6):1694-1702. PubMed ID: 36789765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a cleavable linker chemistry-based
    Zhou S; Li Z; Li Y; Wang X; Deng K
    Anal Methods; 2023 Dec; 15(48):6738-6749. PubMed ID: 38054244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Approaches for Affinity-Based Exosome Separation.
    Theel EK; Schwaminger SP
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device.
    Zhao W; Zhang L; Ye Y; Li Y; Luan X; Liu J; Cheng J; Zhao Y; Li M; Huang C
    Analyst; 2021 Sep; 146(19):5962-5972. PubMed ID: 34494041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A filter-electrochemical microfluidic chip for multiple surface protein analysis of exosomes to detect and classify breast cancer.
    Wang Y; Gao W; Sun M; Feng B; Shen H; Zhu J; Chen X; Yu S
    Biosens Bioelectron; 2023 Nov; 239():115590. PubMed ID: 37607449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications.
    Lin S; Yu Z; Chen D; Wang Z; Miao J; Li Q; Zhang D; Song J; Cui D
    Small; 2020 Mar; 16(9):e1903916. PubMed ID: 31663295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient exosome subpopulation isolation and proteomic profiling using a Sub-ExoProfile chip towards cancer diagnosis and treatment.
    Wang Y; Wang S; Chen A; Wang R; Li L; Fang X
    Analyst; 2022 Sep; 147(19):4237-4248. PubMed ID: 36062905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Extracellular Vesicles by a Microfluidic Platform to Diagnose and Monitor Pancreatic Cancer.
    Sancho-Albero M; Sebastián V
    Methods Mol Biol; 2023; 2679():181-191. PubMed ID: 37300616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Microfluidic Device for Exosome Isolation in Point-of-Care Settings.
    Ramnauth N; Neubarth E; Makler-Disatham A; Sher M; Soini S; Merk V; Asghar W
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification.
    Fang S; Tian H; Li X; Jin D; Li X; Kong J; Yang C; Yang X; Lu Y; Luo Y; Lin B; Niu W; Liu T
    PLoS One; 2017; 12(4):e0175050. PubMed ID: 28369094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated lab-on-a-chip platform for pre-concentration and detection of colorectal cancer exosomes using anti-CD63 aptamer as a recognition element.
    Chinnappan R; Ramadan Q; Zourob M
    Biosens Bioelectron; 2023 Jan; 220():114856. PubMed ID: 36395728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis.
    Mohammadi M; Zargartalebi H; Salahandish R; Aburashed R; Wey Yong K; Sanati-Nezhad A
    Biosens Bioelectron; 2021 Jul; 183():113176. PubMed ID: 33845291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.