These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37603989)

  • 21. Quantitative Analysis of Origin of Lithium Inventory Loss and Interface Evolution over Extended Fast Charge Aging in Li Ion Batteries.
    Yang Z; Tanim TR; Liu H; Bloom I; Dufek EJ; Key B; Ingram BJ
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37410-37421. PubMed ID: 37493566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic Analysis of Microstructural Attributes to Lithium Plating in Fast Charging.
    Kabra V; Parmananda M; Fear C; Usseglio-Viretta FLE; Colclasure A; Smith K; Mukherjee PP
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55795-55808. PubMed ID: 33274910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.
    Yamamoto K; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Onboard early detection and mitigation of lithium plating in fast-charging batteries.
    Huang W; Ye Y; Chen H; Vilá RA; Xiang A; Wang H; Liu F; Yu Z; Xu J; Zhang Z; Xu R; Wu Y; Chou LY; Wang H; Xu J; Boyle DT; Li Y; Cui Y
    Nat Commun; 2022 Nov; 13(1):7091. PubMed ID: 36402759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Situ Li-Plating Diagnosis for Fast-Charging Li-Ion Batteries Enabled by Relaxation-Time Detection.
    Xu L; Xiao Y; Yang Y; Xu R; Yao YX; Chen XR; Li ZH; Yan C; Huang JQ
    Adv Mater; 2023 Oct; 35(42):e2301881. PubMed ID: 37718507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the Influence of Li Plating on a Graphite Anode by Mass Spectrometry.
    Zhang H; Chen J; Zeng G; Wu X; Wang J; Xue J; Hong YH; Qiao Y; Sun SG
    Nano Lett; 2023 Apr; 23(8):3565-3572. PubMed ID: 37026665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical-driven green recovery of lithium, graphite and cathode from lithium-ion batteries using water.
    Sarkar A; Shrotriya P; Nlebedim IC
    Waste Manag; 2022 Aug; 150():320-327. PubMed ID: 35905673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cooperative biphasic MoO
    Lee SM; Kim J; Moon J; Jung KN; Kim JH; Park GJ; Choi JH; Rhee DY; Kim JS; Lee JW; Park MS
    Nat Commun; 2021 Jan; 12(1):39. PubMed ID: 33397916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A parallel-plate RF probe and battery cartridge for
    Aguilera AR; MacMillan B; Krachkovskiy S; Sanders KJ; Alkhayri F; Adam Dyker C; Goward GR; Balcom BJ
    J Magn Reson; 2021 Apr; 325():106943. PubMed ID: 33647764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Nonstoichiometric Niobium Oxide/Graphite Composite for Fast-Charge Lithium-Ion Batteries.
    Li T; Liu K; Nam G; Kim MG; Ding Y; Zhao B; Luo Z; Wang Z; Zhang W; Zhao C; Wang JH; Song Y; Liu M
    Small; 2022 Jul; 18(26):e2200972. PubMed ID: 35618443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Li-ion half-cells studied
    Hattendorff J; Seidlmayer S; Gasteiger HA; Gilles R
    J Appl Crystallogr; 2020 Feb; 53(Pt 1):210-221. PubMed ID: 32047412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (7)Li in situ 1D NMR imaging of a lithium ion battery.
    Klamor S; Zick K; Oerther T; Schappacher FM; Winter M; Brunklaus G
    Phys Chem Chem Phys; 2015 Feb; 17(6):4458-65. PubMed ID: 25578436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operando NMR characterization of a metal-air battery using a double-compartment cell design.
    Gauthier M; Nguyen MH; Blondeau L; Foy E; Wong A
    Solid State Nucl Magn Reson; 2021 Jun; 113():101731. PubMed ID: 33823328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible Li Plating on Graphite Anodes through Electrolyte Engineering for Fast-Charging Batteries.
    Yue X; Zhang J; Dong Y; Chen Y; Shi Z; Xu X; Li X; Liang Z
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202302285. PubMed ID: 36896813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti
    Shang M; Chen X; Li B; Niu J
    ACS Nano; 2020 Mar; 14(3):3678-3686. PubMed ID: 32078306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling.
    Lu X; Lagnoni M; Bertei A; Das S; Owen RE; Li Q; O'Regan K; Wade A; Finegan DP; Kendrick E; Bazant MZ; Brett DJL; Shearing PR
    Nat Commun; 2023 Aug; 14(1):5127. PubMed ID: 37620348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into soft short circuit-based degradation of lithium metal batteries.
    Menkin S; Fritzke JB; Larner R; de Leeuw C; Choi Y; Gunnarsdóttir AB; Grey CP
    Faraday Discuss; 2024 Jan; 248(0):277-297. PubMed ID: 37870402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.