BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37604066)

  • 1. Locomotor efference copy signaling and gaze control: An evolutionary perspective.
    Lambert FM; Beraneck M; Straka H; Simmers J
    Curr Opin Neurobiol; 2023 Oct; 82():102761. PubMed ID: 37604066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of locomotor efference copy in vertebrate gaze stabilization.
    Straka H; Lambert FM; Simmers J
    Front Neural Circuits; 2022; 16():1040070. PubMed ID: 36569798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion.
    Lambert FM; Combes D; Simmers J; Straka H
    Curr Biol; 2012 Sep; 22(18):1649-58. PubMed ID: 22840517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of locomotion-induced oculomotor activity through evolution in mammals.
    França de Barros F; Bacqué-Cazenave J; Taillebuis C; Courtand G; Manuel M; Bras H; Tagliabue M; Combes D; Lambert FM; Beraneck M
    Curr Biol; 2022 Jan; 32(2):453-461.e4. PubMed ID: 34856124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving or being moved: that makes a difference.
    Straka H; Chagnaud BP
    J Neurol; 2017 Oct; 264(Suppl 1):28-33. PubMed ID: 28271408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for Gaze Stabilization Critically Depend on Locomotor Speed.
    Dietrich H; Wuehr M
    Neuroscience; 2019 Jun; 408():418-429. PubMed ID: 30703510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal corollary discharge modulates motion sensing during vertebrate locomotion.
    Chagnaud BP; Banchi R; Simmers J; Straka H
    Nat Commun; 2015 Sep; 6():7982. PubMed ID: 26337184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective suppression of the vestibulo-ocular reflex during human locomotion.
    Dietrich H; Wuehr M
    J Neurol; 2019 Sep; 266(Suppl 1):101-107. PubMed ID: 31073715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Straka H; Combes D; Lambert FM
    Nat Commun; 2022 May; 13(1):2957. PubMed ID: 35618719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory eye movements produced during fictive swimming of a deafferented, reduced preparation in vitro.
    Stehouwer DJ
    Brain Res; 1987 May; 410(2):264-8. PubMed ID: 3496141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.
    Sağlam M; Lehnen N
    J Vestib Res; 2014; 24(5-6):425-31. PubMed ID: 25564085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians.
    Branoner F; Chagnaud BP; Straka H
    Front Neural Circuits; 2016; 10():91. PubMed ID: 27877114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibuloocular reflex signal modulation during voluntary and passive head movements.
    Roy JE; Cullen KE
    J Neurophysiol; 2002 May; 87(5):2337-57. PubMed ID: 11976372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Organization of Vestibulo-Ocular Responses in Abducens Motoneurons.
    Dietrich H; Glasauer S; Straka H
    J Neurosci; 2017 Apr; 37(15):4032-4045. PubMed ID: 28292832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibular and cerebellar contribution to gaze optimality.
    Sağlam M; Glasauer S; Lehnen N
    Brain; 2014 Apr; 137(Pt 4):1080-94. PubMed ID: 24549962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.
    Hänzi S; Banchi R; Straka H; Chagnaud BP
    J Exp Biol; 2015 Jun; 218(Pt 11):1748-58. PubMed ID: 26041033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.