These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37604624)

  • 1. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships.
    Redón L; Safar Beiranvand M; Subirats X; Rosés M
    Anal Chim Acta; 2023 Oct; 1277():341672. PubMed ID: 37604624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Goss-modified solvation parameter model for the characterization of biphasic systems and descriptor assignments.
    Poole CF
    J Chromatogr A; 2024 Aug; 1730():465143. PubMed ID: 38991600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions.
    Subirats X; Abraham MH; Rosés M
    Anal Chim Acta; 2019 Dec; 1092():132-143. PubMed ID: 31708026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model.
    Poole CF; Atapattu SN
    J Chromatogr A; 2023 Jan; 1687():463682. PubMed ID: 36502643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography.
    Redón L; Subirats X; Rosés M
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of partitioning parameters of nonionic surfactants using calculated descriptors of molecular size, polarity, and hydrogen bonding.
    Altomare C; Carotti A; Trapani G; Liso G
    J Pharm Sci; 1997 Dec; 86(12):1417-25. PubMed ID: 9423157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additional investigations into the retention mechanism of hydrophilic interaction liquid chromatography by linear solvation energy relationships.
    Schuster G; Lindner W
    J Chromatogr A; 2013 Aug; 1301():98-110. PubMed ID: 23791147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography.
    Obradović D; Stavrianidi AN; Ustinovich KB; Parenago OO; Shpigun OA; Agbaba D
    J Chromatogr A; 2019 Oct; 1603():371-379. PubMed ID: 31060781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limiting partition coefficients of solutes in biphasic trihexyltetradecylphosphonium chloride ionic liquid-supercritical CO2 system: measurement and LSER-based correlation.
    Planeta J; Karásek P; Roth M
    J Phys Chem B; 2007 Jul; 111(26):7620-5. PubMed ID: 17547452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of amino-, cyano- and diol-bonded silica in reversed-phase liquid chromatography.
    Kim IW; Lee HS; Lee YK; Jang MD; Par JH
    J Chromatogr A; 2001 Apr; 915(1-2):35-42. PubMed ID: 11358260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships.
    Schuster G; Lindner W
    J Chromatogr A; 2013 Jan; 1273():73-94. PubMed ID: 23265993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular interactions involved in solute retention on carbon media in reversed-phase high-performance liquid chromatography.
    Jackson PT; Schure MR; Weber TP; Carr PW
    Anal Chem; 1997 Feb; 69(3):416-25. PubMed ID: 9030054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput logPo/w determination from UHPLC measurements: Revisiting the chromatographic hydrophobicity index.
    Subirats X; Rosés M; Bosch E
    J Pharm Biomed Anal; 2016 Aug; 127():26-31. PubMed ID: 26732880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of molecular interactions on retention and selectivity in reversed-phase liquid chromatography.
    Szepesy L
    J Chromatogr A; 2002 Jun; 960(1-2):69-83. PubMed ID: 12150564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of solute descriptors by chromatographic methods.
    Poole CF; Atapattu SN; Poole SK; Bell AK
    Anal Chim Acta; 2009 Oct; 652(1-2):32-53. PubMed ID: 19786169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrostatic origin of Abraham's solute polarity parameter.
    Arey JS; Green WH; Gschwend PM
    J Phys Chem B; 2005 Apr; 109(15):7564-73. PubMed ID: 16851869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines for descriptor assignments for the solvation parameter model by separation techniques.
    Poole CF
    J Chromatogr A; 2024 Aug; 1729():464964. PubMed ID: 38843574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention behavior of hydrophobic organic chemicals as a function of temperature in soil leaching column chromatography.
    Liang X; Xu F; Lin B; Su F; Schramm KW; Kettrup A
    Chemosphere; 2002 Nov; 49(6):569-74. PubMed ID: 12430644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.