These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 37605279)
21. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Guo C; Otani A; Oishi A; Kojima H; Makiyama Y; Nakagawa S; Yoshimura N Exp Eye Res; 2012 Nov; 104():39-47. PubMed ID: 23022404 [TBL] [Abstract][Full Text] [Related]
22. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. Gargini C; Terzibasi E; Mazzoni F; Strettoi E J Comp Neurol; 2007 Jan; 500(2):222-38. PubMed ID: 17111372 [TBL] [Abstract][Full Text] [Related]
23. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa. Scott PA; Fernandez de Castro JP; Kaplan HJ; McCall MA Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2452-9. PubMed ID: 24618321 [TBL] [Abstract][Full Text] [Related]
24. Optimal timing for activation of sigma 1 receptor in the Pde6b Wang J; Xiao H; Barwick S; Liu Y; Smith SB Exp Eye Res; 2021 Jan; 202():108397. PubMed ID: 33310057 [TBL] [Abstract][Full Text] [Related]
25. Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. Wert KJ; Sancho-Pelluz J; Tsang SH Hum Mol Genet; 2014 Jan; 23(2):514-23. PubMed ID: 24101599 [TBL] [Abstract][Full Text] [Related]
26. Late-stage rescue of visually guided behavior in the context of a significantly remodeled retinitis pigmentosa mouse model. Kajtna J; Tsang SH; Koch SF Cell Mol Life Sci; 2022 Feb; 79(3):148. PubMed ID: 35195763 [TBL] [Abstract][Full Text] [Related]
27. Alterations to retinal architecture prior to photoreceptor loss in a mouse model of retinitis pigmentosa. Roche SL; Wyse-Jackson AC; Byrne AM; Ruiz-Lopez AM; Cotter TG Int J Dev Biol; 2016; 60(4-6):127-39. PubMed ID: 27160072 [TBL] [Abstract][Full Text] [Related]
28. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review. Kalloniatis M; Nivison-Smith L; Chua J; Acosta ML; Fletcher EL Exp Eye Res; 2016 Sep; 150():106-21. PubMed ID: 26521764 [TBL] [Abstract][Full Text] [Related]
29. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Beltran WA; Cideciyan AV; Lewin AS; Iwabe S; Khanna H; Sumaroka A; Chiodo VA; Fajardo DS; Román AJ; Deng WT; Swider M; Alemán TS; Boye SL; Genini S; Swaroop A; Hauswirth WW; Jacobson SG; Aguirre GD Proc Natl Acad Sci U S A; 2012 Feb; 109(6):2132-7. PubMed ID: 22308428 [TBL] [Abstract][Full Text] [Related]
30. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. Ohnaka M; Miki K; Gong YY; Stevens R; Iwase T; Hackett SF; Campochiaro PA J Neurochem; 2012 Sep; 122(5):1047-53. PubMed ID: 22726126 [TBL] [Abstract][Full Text] [Related]
31. p75 Platón-Corchado M; Barcelona PF; Jmaeff S; Marchena M; Hernández-Pinto AM; Hernández-Sánchez C; Saragovi HU; de la Rosa EJ Cell Death Dis; 2017 Jul; 8(7):e2922. PubMed ID: 28703796 [TBL] [Abstract][Full Text] [Related]
32. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa. Nakamura PA; Tang S; Shimchuk AA; Ding S; Reh TA Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6407-6415. PubMed ID: 27893103 [TBL] [Abstract][Full Text] [Related]
33. Microglia Preserve Visual Function in a Mouse Model of Retinitis Pigmentosa with Rhodopsin-P23H Mutant. Yu C; Saban DR Adv Exp Med Biol; 2023; 1415():421-425. PubMed ID: 37440067 [TBL] [Abstract][Full Text] [Related]
34. Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa. Batabyal S; Kim S; Carlson M; Narcisse D; Tchedre K; Dibas A; Sharif NA; Mohanty S Transl Vis Sci Technol; 2024 Oct; 13(10):25. PubMed ID: 39412768 [TBL] [Abstract][Full Text] [Related]
35. Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa. Yang H; Fu Y; Liu X; Shahi PK; Mavlyutov TA; Li J; Yao A; Guo SZ; Pattnaik BR; Guo LW Mol Neurodegener; 2017 Sep; 12(1):68. PubMed ID: 28927431 [TBL] [Abstract][Full Text] [Related]
36. Metipranolol promotes structure and function of retinal photoreceptors in the rd10 mouse model of human retinitis pigmentosa. Kanan Y; Khan M; Lorenc VE; Long D; Chadha R; Sciamanna J; Green K; Campochiaro PA J Neurochem; 2019 Jan; 148(2):307-318. PubMed ID: 30315650 [TBL] [Abstract][Full Text] [Related]
37. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Pang JJ; Dai X; Boye SE; Barone I; Boye SL; Mao S; Everhart D; Dinculescu A; Liu L; Umino Y; Lei B; Chang B; Barlow R; Strettoi E; Hauswirth WW Mol Ther; 2011 Feb; 19(2):234-42. PubMed ID: 21139570 [TBL] [Abstract][Full Text] [Related]
38. Sex-related differences in the progressive retinal degeneration of the rd10 mouse. Li B; Gografe S; Munchow A; Lopez-Toledano M; Pan ZH; Shen W Exp Eye Res; 2019 Oct; 187():107773. PubMed ID: 31445902 [TBL] [Abstract][Full Text] [Related]
39. [Toward establishment of regenerative cell therapy for retinitis pigmentosa using iPS cell derived retinal sheet]. Akiba R; Matsuyama T; Takahashi M; Mandai M Nihon Yakurigaku Zasshi; 2020; 155(2):93-98. PubMed ID: 32115485 [TBL] [Abstract][Full Text] [Related]
40. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice. Sun J; Mandai M; Kamao H; Hashiguchi T; Shikamura M; Kawamata S; Sugita S; Takahashi M Stem Cells; 2015 May; 33(5):1543-53. PubMed ID: 25728228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]