These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37606197)

  • 1. Irradiation of Plutonium Tributyl Phosphate Complexes by Ionizing Alpha Particles: A Computational Study.
    Tolu D; Guillaumont D; de la Lande A
    J Phys Chem A; 2023 Aug; 127(34):7045-7057. PubMed ID: 37606197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutarimidedioxime: A Complexing and Reducing Reagent for Plutonium Recovery from Spent Nuclear Fuel Reprocessing.
    Xian L; Tian G; Beavers CM; Teat SJ; Shuh DK
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4671-3. PubMed ID: 26970221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical characterization of plutonium in n-tributyl phosphate.
    Bahri MA; Ruas A; Labbé E; Moisy P
    Dalton Trans; 2017 Apr; 46(15):4943-4949. PubMed ID: 28265606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: insights from molecular dynamics simulation.
    Sahu P; Ali SM; Shenoy KT
    Phys Chem Chem Phys; 2016 Aug; 18(34):23769-84. PubMed ID: 27524180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of plutonium(IV) complexes formed within the PUREX process: a proposal of a plutonium surrogate in fire conditions.
    Šulka M; Cantrel L; Vallet V
    J Phys Chem A; 2014 Oct; 118(43):10073-80. PubMed ID: 25290588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of tributyl phosphate by fenton oxidation: Optimization of parameter, degradation kinetics and pathway.
    Wang S; Yu G; Wang J
    Chemosphere; 2023 Mar; 317():137889. PubMed ID: 36657574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Microemulsion Phase Transition: Toward the Elucidation of Third-Phase Formation in Spent Nuclear Fuel Reprocessing.
    Mu J; Motokawa R; Akutsu K; Nishitsuji S; Masters AJ
    J Phys Chem B; 2018 Feb; 122(4):1439-1452. PubMed ID: 29216427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fission product decontamination factors for plutonium separated by PUREX from low-burnup, fast-neutron irradiated depleted UO
    Mendoza PM; Chirayath SS; Folden Iii CM
    Appl Radiat Isot; 2016 Dec; 118():38-42. PubMed ID: 27611079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation.
    Mincher BJ; Mezyk SP; Martin LR
    J Phys Chem A; 2008 Jul; 112(28):6275-80. PubMed ID: 18572898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS.
    McDonald LW; Campbell JA; Vercouter T; Clark SB
    Anal Chem; 2016 Mar; 88(5):2614-21. PubMed ID: 26823002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of molecular structure and self-association of tri-n-butyl phosphates in n-dodecane.
    Vo QN; Hawkins CA; Dang LX; Nilsson M; Nguyen HD
    J Phys Chem B; 2015 Jan; 119(4):1588-97. PubMed ID: 25564136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Speciation Study of Uranium(VI) and Technetium(VII) Coextraction with DEHiBA.
    Moeyaert P; Dumas T; Guillaumont D; Kvashnina K; Sorel C; Miguirditchian M; Moisy P; Dufrêche JF
    Inorg Chem; 2016 Jul; 55(13):6511-9. PubMed ID: 27322130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique.
    Sun Q; Jiang L; Gong L; Sun JH
    J Hazard Mater; 2016 Aug; 314():230-236. PubMed ID: 27136728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the Structures of Uranyl-Tri-n-butyl-Phosphate Aggregates by Coupling Experimental Results with Molecular Dynamic Simulations.
    Guilbaud P; Berthon L; Louisfrema W; Diat O; Zorz N
    Chemistry; 2017 Nov; 23(65):16660-16670. PubMed ID: 28971546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the structure and thermodynamics of carrier-assisted uranyl ion extraction.
    Jayasinghe M; Beck TL
    J Phys Chem B; 2009 Aug; 113(34):11662-71. PubMed ID: 19845396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved determination of tributyl phosphate degradation products (mono- and dibutyl phosphates) by ion chromatography.
    Dodi A; Verda G
    J Chromatogr A; 2001 Jun; 920(1-2):275-81. PubMed ID: 11453010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexation Behavior of the Tri-n-butyl Phosphate Ligand with Pu(IV) and Zr(IV): A Computational Study.
    Gopakumar G; Sreenivasulu B; Suresh A; Brahmmananda Rao CV; Sivaraman N; Joseph M; Anoop A
    J Phys Chem A; 2016 Jun; 120(24):4201-10. PubMed ID: 27248966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Dimer and Trimer Formation by Tri-n-butyl Phosphates in n-Dodecane: Molecular Dynamics Simulations.
    Vo QN; Dang LX; Nilsson M; Nguyen HD
    J Phys Chem B; 2016 Jul; 120(28):6985-94. PubMed ID: 27398866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of phase transfer of uranyl ions: a vibrational sum frequency generation spectroscopy study on solvent extraction in nuclear reprocessing.
    Kusaka R; Watanabe M
    Phys Chem Chem Phys; 2018 Dec; 20(47):29588-29590. PubMed ID: 30460361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Molecular Dynamics Study of Tributyl Phosphate and Diamyl Amyl Phosphonate Self-Aggregation in Dodecane and Octane.
    Servis MJ; Tormey CA; Wu DT; Braley JC
    J Phys Chem B; 2016 Mar; 120(10):2796-806. PubMed ID: 26886767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.